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Forced dynamics of a short viscous liquid bridge
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The dynamics of an axisymmetric liquid bridge of a fluid of density ρ, viscosity µ

and surface tension σ held between two co-axial disks of equal radius e is studied
when one disk is slowly moved with a velocity U(t). The analysis is performed
using a one-dimensional model for thin bridges. We consider attached boundary
conditions (the contact line is fixed to the boundary of the disk), neglect gravity
and limit our analysis to short bridges such that there exists a stable equilibrium
shape. This equilibrium is a Delaunay curve characterized by the two geometric
parameters `0 = V0/(πe3) and S= `(πe2)/V0, where V0 is the volume of fluid and `
the length of the bridge. Our objective is to analyse the departure of the dynamical
solution from the static Delaunay shape as a function of `0, S, the Ohnesorge
number Oh = µ/√ρσe, and the instantaneous velocity U(t) and acceleration ∂tU
(non-dimensionalized using e and σ/ρ) of the disk. Using a perturbation theory for
small velocity and acceleration, we show that (i) a non-homogeneous velocity field
proportional to U(t) and independent of Oh is present within the bridge; (ii) the area
correction to the equilibrium shape can be written as U2Ai +U Oh Av + ∂tUAa where
Ai, Av and Aa are functions of `0 and S only. The characteristics of the velocity field
and the shape corrections are analysed in detail. For the case of a cylinder (S = 1),
explicit expressions are derived and used to provide some insight into the break-up
that the deformation would induce. The asymptotic results are validated and tested
by direct numerical simulations when the velocity is constant and when it oscillates.
For the constant velocity case, we demonstrate that the theory provides a very good
estimate of the dynamics for a large range of parameters. However, a systematic
departure is observed for very small Oh due to the persistence of free eigenmodes
excited during the transient. These same eigenmodes also limit the applicability of the
theory to oscillating bridges with large oscillating periods. Finally, the perturbation
theory is applied to the cylindrical solution of Frankel & Weihs (J. Fluid Mech.,
vol. 155 (1985), pp. 289–307) obtained for constant velocity U when the contact lines
are allowed to move. We show that it can be used to compute the correction associated
with acceleration. Finally, the effect of gravity is discussed and shown to modify the
equilibrium shape but not the main results obtained from the perturbation theory.
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1. Introduction

Liquid jets and ligaments have been widely studied for a long time, and although
much work has been done, especially on break-up (Eggers & Villermaux 2008),
some fundamental issues remain to be addressed. Among these questions is the role
played by stretching on the dynamics. Here, we analyse how a weak and controlled
elongation affects the dynamics of stable ligaments.

Ligament stretching occurs in many industrial processes and natural flows. In fibre
drawing process used to manufacture optical fibres, or in the glass wool process, thin
ligaments of molten glass are stretched either by mechanical action or high-speed air
flow, and cool down before the occurrence of Rayleigh–Plateau instability (Plateau
1873). Evidence of elongated and smooth ligaments is also found in nature in the
vicinity of some volcanoes, under the name ‘Pele’s hair’ (Villermaux 2012). These thin
lava threads arise during strong explosions: jets of liquid lava are strongly stretched
by the explosion, as in the industrial process mentioned above, and cool down before
breaking up into droplets.

More controlled stretching conditions have been studied in the literature. Among
them is the natural stretching encountered by a capillary jet falling under gravity.
This simple configuration has been analysed in detail by Cheong & Howes (2004)
and Sauter & Buggisch (2013) among others. The stretching that the jet experiences
as it falls is believed to be responsible for the delay in break-up (Tomotika 1936).
This idea was further analysed by Frankel & Weihs (1985) who considered the
stability of a uniformly stretched ligament. Unfortunately, their analysis applies to
cylindrical ligaments only, and requires very special time variation of the stretching
rate. Numerous works have also considered, for its link with the problem encountered
in micro-gravity (e.g. Fowle, Wang & Strong 1979; Zhang & Alexander 1990), an
inviscid liquid bridge subjected to an axially oscillating forcing (for a complete list of
references, see Perales & Meseguer 1992). In the more general viscous case, as shown
by Perales & Meseguer (1992), when the boundaries are oscillating axially, the bridge
may in particular exhibit resonant frequencies leading to large deformations. Dynamics
of oscillating viscous liquid bridges were studied in detail by Borkar & Tsamopoulos
(1991), Tsamopoulos, Chen & Borkar (1992), Chen & Tsamopoulos (1993), Mollot
et al. (1993). Borkar & Tsamopoulos (1991) carried out a boundary-layer analysis
to account for the presence of viscosity, in the limit of large Reynolds number;
Tsamopoulos et al. (1992) focused on linearized dynamics of liquid bridges, i.e.
small-amplitude oscillations, for arbitrary viscosity. Chen & Tsamopoulos (1993)
used finite-element two-dimensional numerical simulations to account for nonlinear
effects (finite-amplitude oscillations). The corresponding experiments were carried out
by Mollot et al. (1993). The authors showed that the resonant frequency of liquid
bridges decreases almost linearly with the oscillation amplitude; the damping rate
was also shown to be greater than the one predicted by the linear theory.

More recently, the shape and the evolution of a horizontal hanging viscous ligament
subjected to gravity has been studied (Le Merrer et al. 2008). In particular, the
transition of this catenary into a U-shape has been discussed.

In general, when a liquid bridge is stretched by moving apart the supports on which
it is attached, the bridge does not remain cylindrical and experiences a non-uniform
stretching field (Gaudet, McKinley & Stone 1996). Even if the contact lines are
allowed to move, the bridge shape is found to change (see for instance Dodds,
Carvalho & Kumar 2011). Quantifying these modifications and the stretching field
constitutes one of the motivations of the present work. As shown by Kroger et al.
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FIGURE 1. (Colour online) Description of a stretched liquid bridge.

(1992), this objective is also important in order to be able to measure the elongational
viscosity of non-Newtonian fluids using this technique.

In the present work, we follow the analysis by Zhang, Padgett & Basaran (1996)
and use the one-dimensional model introduced by Eggers & Dupont (1994) where the
full curvature term is kept. This model has a long history which goes back to Saint
Venant and Cosserat (see, for instance Bogy 1978; Meseguer 1983). It has been tested
and validated in numerous studies (see for instance Eggers & Dupont 1994; Ramos,
Garcia & Valverde 1999; Ambravaneswaran, Wilkes & Basaran 2002).

Zhang et al.’s analysis has been pursued by Liao, Franses & Basaran (2006).
They considered the effects of a surfactant monolayer on the breaking of a liquid
bridge. The pinching was found to be weakly delayed because of both the lowering
of surface tension and flows arising from Marangoni stresses. The latter effect was
however strengthened when the rod were pulled away, and thus the length at which
the bridge breaks was found to increase appreciably with the stretching speed.

Instead of analysing the effect of stretching on break-up, we focus on the early-
time dynamics when the bridge is still stable. Our interest is to analyse the difference
between the equilibrium state and the dynamical state obtained during the elongation
process.

2. Framework
We consider the dynamics of a thin axisymmetric liquid bridge elongated between

two coaxial disks of radius e, as sketched in figure 1. The fluid is incompressible and
has a dynamic viscosity µ, a density ρ, and a surface tension σ with the surrounding
gas, which is neglected. Spatial and time variables are non-dimensionalized using the
radius e of the bridge at its ends, and the capillary time τc =

√
ρe3/σ respectively.

Volumes are then measured in units of e3.
In the present study, we assume that the liquid bridge can be described by the one-

dimensional model

∂A
∂t
=−∂ (Au)

∂z
, (2.1a)

∂u
∂t
=−u

∂u
∂z
+ 3 Oh

1
A
∂

∂z

(
A
∂u
∂z

)
+ ∂K
∂z
− Bo, (2.1b)

with

K = 4AAzz − 2A2
z

[4A+ A2
z ]3/2
− 2
[4A+ A2

z ]1/2
, (2.2)

where u(z, t) is the local axial velocity, A= h2 is the square of the local radius h(z, t),
z is the axial coordinate, t is the time variable, Az and Azz are respectively, the first and
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second derivative of A with respect to z. This one-dimensional model can be derived
from the Navier–Stokes equations under the slenderness hypothesis, i.e. provided that
the axial extent of the fluid volume is greater than its radial extent (see for instance
Eggers 1997). As shown in numerous studies (e.g. Johnson et al. 1991; Ramos et al.
1999), it also correctly describes the dynamics of a liquid bridge outside this regime,
if we keep all the terms in the curvature K, as we do here.

The system of equations (2.1a,b) depends on the Ohnesorge number Oh and the
Bond number Bo which compare viscous and gravitational forces to surface tension
forces, respectively. These parameters are defined by:

Oh= µ√
ρσe

, Bo= ρge2

σ
. (2.3a,b)

At t= 0, the liquid bridge is assumed to have a length `0 and a (non-dimensional)
volume V0 = π`0. The liquid bridge is elongated by moving one end with a speed
U(t). The length `(t) of the bridge then evolves in time according to

`(t)= `0 +
∫ t

0
U(s)ds. (2.4)

The contact lines are assumed to be attached to the disk, except in § 5.2 where
different boundary conditions are considered. Here, the boundary conditions to apply
on A(z, t) and u(z, t) are

A(0, t)= 1, A(`(t), t)= 1, (2.5a)
u(0, t)= 0, u(`(t), t)=U(t). (2.5b)

In addition, the fluid volume is conserved. Thus, A must also satisfy:∫ `(t)

0
A(z, t)dz= `0. (2.6)

Except in § 6 where gravity effects are considered, we assume in the following that
Bo= 0. The initial state is therefore a cylinder. When the bridge is elongated to a new
state of length `, its shape changes. An equilibrium state of length ` exists (and is
stable) when ` is not too large. This state corresponds to a Delaunay curve which is
defined by the condition

∂K
∂z
= 0. (2.7)

The equilibrium state is actually defined by the two parameters `0 (which fixes the
volume of fluid), and the stretching parameter S= `/`0. For each set of parameters, it
has a constant curvature KD. Figure 2(a) shows how the curvature KD(`0,S) varies as a
function of `0 and S. The limits of the domain correspond to stability boundaries (see
for instance Gillette & Dyson 1970; Slobozhanin & Perales 1993). The equilibrium
states are symmetric with respect to the median plane z= `/2. In figure 2(b), several
examples of equilibrium shape have been plotted as a function of z/`. As observed in
this plot, stretching the liquid bridge tends to shrink the middle portion of the bridge.

Because the contact line is assumed to be pinned, the equilibrium shape is found
independently of the contact angle at the edges. In other situations, e.g. a meniscus
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FIGURE 2. (a) Iso-curvature lines of the Delaunay equilibrium shape as a function of the
initial length `0 and the stretching factor S. (b) Examples of the Delaunay equilibrium
shape versus Z = z/` for different `0 and S. Solid lines: `0 = 1; dashed lines: `0 = 2.

between a sphere and a plane, the shape is imposed by the contact angle (see for
example Orr, Scriven & Rivas 1975); this corresponds to a different set of boundary
conditions.

Our objective is to quantify the differences between the dynamical shape and the
equilibrium shape during a slow elongation/compression episode. We first develop
a perturbation theory which shows that the corrections can be attributed to three
different effects. This theory is then validated using direct numerical simulations of
system (2.1) in § 4. The special case of a cylinder which corresponds to S = 1 is
considered in § 5.

3. Theoretical study

In this section, we assume that the liquid bridge is, at leading order, close to the
equilibrium shape such that we can write the velocity u and shape A as

A= A0(z, S, `0)+ A1(z, t, S, `0), (3.1a)
u= u1(z, t, S, `0), (3.1b)

with |A1|� 1 and |u1|� 1. The leading-order shape A0 which satisfies (when Bo= 0)

∂K0

∂z
= 0, (3.2)

is a Delaunay curve A0(z, S, `0)= AD(z/`, S, `0), as described in the previous section.
Since the time variation of AD is associated with variations of ` only, we have

dAD

dt
= U
`0

∂AD

∂S
− UZ

S`0

∂AD

∂Z
(3.3)

where Z = z/`(t). If we plug (3.1a,b) into (2.1a), we then get at leading order

∂(ADu1)

∂Z
=U

(
Z
∂AD

∂Z
− S

∂AD

∂S

)
. (3.4)
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FIGURE 3. (a) Velocity field ũ1=U1/U and (b) local strain rate ∂ ũ1/∂Z predicted by the
theory. Solid lines: `0 = 1; dashed lines: `0 = 2.

This equation gives for ũ1 = u1/U

ũ1 = Z − 1
AD

∂ (SVD)

∂S
, (3.5)

where

VD(Z, S, `0)=
∫ Z

0
AD(Z′, S, `0)dZ′ (3.6)

stands for the partial volume of the Delaunay shape from 0 to Z in the rescaled space
domain.

It is worth noting that expression (3.5) does not depend on Oh: the velocity field
u1 is associated with kinematic effects only. When the shape is changed from one
Delaunay curve to another by moving one boundary at a speed U, the fluid in the
liquid bridge has to move according to u1. Expression (3.5) possesses some properties.
The second term on the right-hand side of (3.5) is anti-symmetric with respect to the
mid-plane Z = 1/2. This means that the velocity obtained by pulling both sides with
an opposite velocity U/2 would have been perfectly anti-symmetric with respect to the
mid-plane Z= 1/2 and given by (3.5) shifted by −1/2. This property comes from the
Galilean invariance of the theoretical analysis when the acceleration of the bridge is
small. Interestingly, the local strain field ∂ ũ1/∂Z is strongly non-uniform. It vanishes
at the boundaries and exhibits a maximum in the middle of the liquid bridge at
Z= 1/2. Both the function ũ1 and the local strain field ∂ ũ1/∂Z are plotted in figure 3
for the sets of parameters considered in figure 2(b). We observe that the local strain
field slightly changes with respect to `0 and S. Note that negative values of the strain
field are obtained close to the rod when S = 2 and `0 = 1. This curve is typical of
large-S configurations. Negative strain rates close to the rod have also been reported
when a non-Newtonian bridge is stretched (Bhat, Basaran & Pasquali 2008). More
generally, capillary pinching induces such negative strain rates. Here we report that
they can also appear before instability sets in.

The maximum and minimum values of the strain field are analysed as a function of
the two parameters `0 and S in figure 4. In figure 4(a), the zero level curve, shown
dashed, indicates the limit above which negative strain fields are present in the bridge.
Note that this parameter region corresponds to the region where the strain field also
reaches the largest positive values (see figure 4b).
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FIGURE 4. Contours of (a) minimum value and (b) maximum value of the local strain
rate ∂u1/∂Z in the domain of existence of the equilibrium solution. In (a), the dashed
line corresponds to the level 0: below this curve, the minimum value of the strain field
is reached at the boundaries.

The correction A1 to the Delaunay curve is obtained from (2.1b):

∂K1

∂z
= ∂u1

∂t
− u1

∂u1

∂z
− 3

Oh
AD

∂

∂z

(
AD
∂u1

∂z

)
, (3.7)

where K1 is the curvature correction induced by A1. This term can be written K1 =
LKD[A1] where LKD is a linear operator, obtained by linearizing (2.2) around AD:

LKD = S`0

(
α0 + α1

∂

∂Z
+ α2

∂2

∂Z2

)
, (3.8)

where

α0 = 4
(
A2

DZ

(
ADZZ + 4(S`0)

2
)− 2AD(S`0)

2
(
ADZZ − 2(S`0)

2
))(

4AD(S`0)2 + A2
DZ

)5/2 , (3.9a)

α1 = 4
(
A3

DZ − ADADZ
(
3ADZZ + 2(S`0)

2
))(

4AD(S`0)2 + A2
DZ

)5/2 , (3.9b)

α2 = 4AD(
4AD(S`0)2 + A2

DZ

)3/2 . (3.9c)

Noting that (∂u1/∂t)= ∂tUũ1− (U2Z/S`0)(∂ ũ1/∂Z)+ (U2/`0)(∂ ũ1/∂S), (3.7) can be
written as

∂K1

∂Z
= ∂tU`0Sũ1 +U2

(
S
∂ ũ1

∂S
+ (ũ1 − Z)

∂ ũ1

∂Z

)
− 3

UOh
`0SAD

∂

∂Z

(
AD
∂ ũ1

∂Z

)
. (3.10)

This allows us to write

A1 = A− AD = ∂tUAa +U2Ai +U Oh Av (3.11)

where Aa, Ai and Av are provided by Ka =LKD[Aa], Ki =LKD[Ai] and Kv =LKD[Av]
with

∂Ka

∂Z
= S`0ũ1, (3.12a)
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∂Ki

∂Z
= S

∂ ũ1

∂S
+ (ũ1 − Z)

∂ ũ1

∂Z
, (3.12b)

∂Kv

∂Z
=− 3

`0SAD

∂

∂Z

(
AD
∂ ũ1

∂Z

)
. (3.12c)

The amplitudes Aa, Ai and Av are associated with acceleration, inertial and viscous
effects respectively. They do not depend on U nor on Oh. They are functions of the
geometrical parameters `0 and S only. Note that from an asymptotical point of view,
we should keep the three terms in (3.11) only if they are of same order. Each term
corresponds to the leading-order correction associated with a given effect.

The functions Ai and Av are symmetric with respect to the mid-plane Z= 1/2. This
symmetry is again associated with the Galilean invariance: similar corrections would
have been obtained by pulling both sides with an opposite velocity U/2. In figure 5,
we have plotted Ai and Av versus Z for different values of S and `0. Surprisingly,
both corrections have a similar form with a maximum at the mid-plane and a negative
minimum near the end. The effect of inertia is therefore similar to that of viscosity.
In both cases, the corrections tend to fill the bridge neck when S> 1. The dynamical
shapes are therefore closer to cylindrical shapes than Delaunay’s. This observation has
already been made by Kroger et al. (1992) who performed stretching experiments on
large bridges in a neutral buoyancy tank. They noticed that ‘increasing inertia, friction
and flow resistance (. . .) tend to stabilize the bridge and thus form more cylindrical
bridges’. The present theory explains this tendency and provides the precise shape of
the correction.

Unlike Ai and Av, Aa does not possess any symmetry. It can be decomposed into
two parts, one generated by S`0(u1 − (1/2)) that gives a symmetric contribution as
if the bridge were elongated from both sides with an opposite velocity U/2 and
another due to a uniform acceleration S`0/2 associated with the breaking of the
Galilean invariance. This last contribution is anti-symmetric and similar to the effect
of gravity considered below. The symmetric and anti-symmetric parts of Aa are plotted
in figure 6.

It is worth mentioning that the theory assumes that the bridge has its dynamics
imposed by the moving disk. Free oscillations have been implicitly filtered out. These
oscillations are damped in the presence of viscosity because we have only considered
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(a) Symmetric part, (b) anti-symmetric part. Solid lines: `0 = 1; dashed lines: `0 = 2.

stable bridges. However, if the Ohnesorge number is very small, these oscillations can
be observed, as will be seen in the next section.

4. Numerical study
In this section, we compare the theoretical predictions with numerical results.

A specific code has been developed based on a centred finite-difference scheme.
Equations (2.1a,b) are solved in a fixed domain (0, 1) by using the change of
variable Z = z/`(t). For maximum accuracy, we have used a staggered grid for u
and A with typically 100 mesh points. Evolution in time is through a fourth-order
Runge–Kutta scheme. This method requires a very small time step not to diverge,
but is more precise than the implicit Crank–Nicholson scheme. A typical simulation
takes 10 min on a laptop computer.

We have first performed simulations where the effect of acceleration can be
neglected. For this purpose, the axial velocity of the top disk rises progressively
from 0 to the desired constant velocity U. A typical law for the variation of
U(t) is shown in figure 7(a). The acceleration phase has two noticeable effects
as illustrated in figure 7(b). It first induces large non-symmetric corrections when
the acceleration term is non-zero, as expected from the theory. It also generates fast
temporal variations in the form of damped oscillations. Such oscillations are visible in
figure 7(b) on the odd-part of the signal where they correspond to a damped sloshing
mode. We can see on this typical example that these anti-symmetric oscillations
become rapidly negligible compared to the symmetric difference between dynamical
and equilibrium shapes. Oscillations are also present in the even-part of the signal,
but these oscillations are so small that they can barely be seen in figure 7(b). We
shall see below that the dynamical state can be dominated by the anti-symmetric
oscillations when U is large and Oh small. However, for the configurations that we
study below, we have checked that the non-symmetry and oscillations generated by
the acceleration phase are indeed negligible. The dynamical state that we reach at
S= 1.5 or S= 2 is therefore symmetric and independent of the transient. It depends
on only two parameters: the elongation speed U (reached after the transient) and
the Ohnesorge number Oh. The largest distance between the dynamical shape and
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the Delaunay shape has been systematically measured at S = 1.5 and S = 2, for
various U and Oh. The results are reported in figure 8(a) as a function of Oh, and
in figure 8(b) as a function of U. In figure 8(a), we see that for each S, the curves
of max(A − AD)/U collapse onto a single curve which is linear with respect to Oh
when Oh is large. This means that the shape correction is expected to scale as UOh
in this regime. However, for small Oh, it tends to become independent of Oh and
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line) and by the simulation (solid line) for S = 1.5, `0 = 1, U = 5 × 10−2 and Oh = 3.
Viscous contribution U Oh Av (dotted line) and inertial contribution U2Ai (dash-dotted line)
which sum up to give the theoretical prediction are also indicated.

varies according to U2 as shown in figure 8(b). The change from one regime to
another occurs at a critical Ohnesorge number Ohc which varies linearly with U.
These observations are in perfect agreement with expression (3.11) for A− AD when
∂tU = 0.

The agreement is also very good for the correction shape and for the velocity.
In figure 9(a), we demonstrate that the velocity in the liquid bridge has the form
predicted by the theory for a large range of U and Oh. Note in particular that
this field is proportional to U and independent of Oh, as predicted by the theory.
In figure 9(b), the correction to the Delaunay shape is compared to the theoretical
prediction when both inertial and viscous corrections are of same order. Again a very
good agreement is observed. Such a comparison has been systematically made for U
and Oh in the intervals (5× 10−3, 1) and (5× 10−5, 30) respectively for S= 1.5. Both
the gap between the numerical solution to the Delaunay curve and to the theoretical
predictions are plotted in figure 10(a,b). In this comparison, the anti-symmetric part
of the numerical shape has been filtered out. These plots provide the strength of the
non-stationary effects (figure 10a) and the amplitude of the error made by the theory
(figure 10b). We can see that the error becomes much smaller than the strength
of the non-stationary effects for small U and small Oh. We can also see that this
error is always smaller than 3 × 10−2 when U and U Oh are smaller than 1. Note,
however, that in the left upper corner of the parameter space, the numerical shape
is dominated by its anti-symmetric part. This contribution corresponds to the first
oscillating sloshing mode which has been excited during the acceleration phase. The
amplitude of this oscillating mode is important for large U and small Oh because it
takes a shorter time to reach S = 1.5 when U is large, and the damping rate of the
mode is smaller when Oh is small.

The effect of the acceleration has also been analysed numerically by varying `(t)
around a mean value according to

`(t)= `m + ε sin
(

2πt
To

)
(4.1)
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FIGURE 10. (a) Maximum distance between the symmetric part of the numerical
shape and the Delaunay curve. (b) Maximum distance between the symmetric part of
the numerical shape and the asymptotically predicted shape. `0 = 1, S = 1.5. The
anti-symmetric part of the numerical shape is larger than its symmetric part above the
solid black line.

such that U(t) and ∂tU vary in quadrature as

U(t)= 2πε

To
cos
(

2πt
To

)
, (4.2a)

∂tU =−4π2ε

T2
o

sin
(

2πt
To

)
. (4.2b)

As both U and ∂tU vary, the relative strength of the different contributions to the
dynamical shape changes in time. For example, at t = 3To/4, U(t) vanishes, so that
the dynamics is expected to be associated with the acceleration only. In figure 11,
we have plotted the numerical shape obtained at this instant as a function of To
for two values of `0. In this case, we have chosen `m = `0 and a very small value
of ε, so the bridge is oscillating around its cylindrical shape with S ≈ 1. In this
figure, we observe that both the symmetric part and the anti-symmetric part of the
signal exhibit peaks for particular values of To. This phenomenon is not new and has
been observed in several works (see for instance Perales & Meseguer 1992). These
peaks can be attributed to resonance with free eigenmodes of the bridge; the vertical
dash-dotted lines correspond to the periods of the linear inviscid eigenmodes of a
cylindrical bridge. When Oh increases these peaks decrease in amplitude because the
resonance becomes imperfect owing to the damping of the modes. The mode with
the largest period and the weakest damping rate is the sloshing mode. We have seen
above that this mode dominates the transient when the bridge is elongated. When To
is large, the shape of the deformation does not depend on To anymore but remains
reminiscent of the sloshing mode, as seen in figure 12(a). This figure demonstrates
that the numerical shape is mainly independent of ε and Oh and agrees well with
the theoretical prediction. Only a small departure for the largest value of Oh can be
noticed.

When we consider the bridge at a different instant, the other contributions associated
with viscous and inertial effects can become important. In figure 12(b), we see that
the three theoretical contributions still correctly sum up to give the numerical curve.
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FIGURE 11. Numerical shape of an oscillating bridge as a function of the oscillating
period To for `0=1 (grey lines) and `0=2 (black lines), S=1, ε=1×10−4, Oh=1×10−2

when the acceleration is maximum (t/To = 3/4). Solid lines are the maximum of the
anti-symmetric part of A, dashed lines are the maximum of the symmetric part of (A−AD).
The vertical dash-dotted lines indicate the period of the linear inviscid eigenmodes of a
cylindrical bridge of length `0.
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FIGURE 12. Comparison between theory and computation for an oscillating bridge.
Correction to the Delaunay shape given by the theory (solid line) and by the simulation
(symbols) for `m = `0 = 2. (a) t/To = 3/4 when U = 0 and ∂tU maximum for To = 140.
(b) t/To = 1.8 when the three theoretical contributions are of same order for To = 200,
Oh= 1× 10−3, ε = 0.1. As we explained above, the solid line corresponds to the shape
given by our theory; the stars correspond to the shape given by the simulation. As we
can see on figure 12(b), the agreement is excellent. Dashed, dotted and dash-dotted lines
are the contributions related to viscous, inertial and acceleration effects respectively.

5. Effect of stretching on a cylindrical bridge
5.1. Attached boundary conditions

In this subsection, we consider the configuration analysed in § 3 for the particular
value S = 1. In that case, the equilibrium state is a cylinder: AD(S = 1, `0) = 1.
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This configuration is interesting because explicit expressions can be obtained for the
dynamical corrections for any `0.

We get, by expanding AD in power of (S− 1), the following expressions for ũ1, Av,
Ai and Aa:

ũ1 = 1
2
+

y cos
(
`0

2

)
− sin(y)

d0
, (5.1)

Av =
3
(

cos
(
`0

2

)
− cos(y)

)(
2d0+`2

0 sin
(
`0

2

))
2d2

0
+

3
(

2y sin(y)− `0 sin
(
`0

2

))
2d0

,

(5.2)

Ai = cos(2y)
3d2

0
+ y sin(y)

(
(3`2

0 + 10) sin(`0)− `0(cos(`0)+ 9)
)

4d3
0

+ 3y2 cos(y)
(`0 − 2 sin(`0)+ `0 cos(`0))

4d3
0

− y2

(
9 sin

(
`0

2

)
+ sin

(
3`0

2

)
− 6`0 cos

(
`0

2

))
2d3

0

+ cos
(
`0

2

)
cos(y)


(
9`4

0 + 92`2
0 − 496

)
cos(`0)+ 496

48d4
0

+
−51`4

0 + 156`2
0 + 2`0

(
47`2

0 +
(
7`2

0 − 192
)

cos(`0)− 304
)

tan
(
`0

2

)
48d4

0


+ `0

(
41`2

0 + 182
)

sin(`0)+
(
3`2

0 + 70
)

cos(2`0)

24d4
0

+
(−3

(
`2

0 + 6
)
`2

0 +
(
`2

0 + 82
)
`0 sin(`0)− 16

)
cos(`0)− 3

(
`4

0 + 39`2
0 + 18

)
24d4

0
,

(5.3)

Aa =
y2 cos

(
`0

2

)
d0

−
cos(y)

(
3
(
`2

0 − 4
)

sin
(
`0

2

)
+ `0

(
`2

0 + 6
)

cos
(
`0

2

))
6d2

0

−`
3
0 cos(`0)+

(
`2

0 − 24
)
`0 − 6

(
`2

0 − 4
)

sin(`0)

24d2
0

+ y sin(y)
d0

− `0 sin(y)

2 sin
(
`0

2

) + y,

(5.4)
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FIGURE 13. Shape correction associated with (a) inertial effects, (b) viscous effects, and
(c) acceleration effects for the case of a cylinder (S= 1). The dashed line represents the
asymptotic estimate obtained for small `0 (expressions (5.7a–c)).

where

y= `0
(
Z − 1

2

)
, (5.5a)

d0 = `0 cos
(
`0

2

)
− 2 sin

(
`0

2

)
. (5.5b)

The shape corrections are plotted in figure 13 for three values of `0.
The correction associated with the acceleration diverges close to `0 = 2π:

Aa ∼
`0→2π

2π sin(2πZ)
2π− `0

, (5.6)

whereas the other corrections are finite at this value. This value of `0 corresponds to
the limit of stability of the cylinder. When `0 is close to 2π, the acceleration excites
the first sloshing mode. Such a mode is not excited by inertial and viscous effects
which can only excite symmetric modes, the first one being at `0 ≈ 9 corresponding
to the vanishing of d0.

For small values of `0,

Av ∼ 3`0

5
Z(Z − 1)(5Z2 − 5Z + 1), (5.7a)

Ai ∼ 3
350`

2
0Z(Z − 1)(15Z6 − 45Z5 + 39Z4 − 3Z3 − 3Z2 − 3Z + 1), (5.7b)

Aa ∼ `3
0

210
Z(1− Z)(7Z4 − 14Z3 − 14Z2 − 14Z + 13). (5.7c)

So, all corrections go to zero as `0→ 0. But note that the scaling laws are different
for each correction.

It may be interesting to speculate on the condition for break-up by applying the
theory in the nonlinear regime; we expect break-up when the total area AD + A1
vanishes at one point. If we consider each effect alone, we then obtain three different
conditions of break-up. For instance, break-up by the inertial effect would occur
at a critical value of the imposed velocity given by U2

c = −(min(Ai))
−1. Viscous

and acceleration effects provide critical values of U Oh and ∂tU respectively. The
variations of these critical values with respect to `0 are reported in figure 14. Each
curve diverges for small `0 as expected from (5.7a–c). Even if these break-up
predictions are questionable, they nevertheless give some information on the transition



Forced dynamics of a short viscous liquid bridge 235

0 2 4 6

102

101

100

0 2 4 6 0 2 4 6

(U
O

h)
c

104

103

102

101

100

103

101

102

100

10–1

10–2

(a) (b) (c)

FIGURE 14. Estimate of the forcing strength needed for break-up by (a) viscous effects,
(b) inertial effects and (c) acceleration effects.

Vc

0 1 2 3 4 5 6
0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90(a) (b)

0 1 2 3 4 5 6

Zc

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
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attached to the boundary, for each type of break-up as a function of the cylinder length `0.
Solid line: viscosity; dashed line: inertia; dotted line: acceleration.

to nonlinearity. In particular, it shows that the larger `0 is, the easier the transition.
It also indicates that for small `0, it will be very difficult to observe any significant
deformation. Note for example that for `0= 1, the critical conditions are (UOh)c≈ 32,
U2

c ≈ 1747 and (∂tU)c ≈ 111.
The point of break-up and the volume that stays attached to the boundary can also

be calculated and are reported in figure 15. Both the position and the attached volume
are similar for viscous and inertial break-up as expected from the almost identical
form of the viscous and inertial corrections (see figure 13a,b). However, the correction
associated with acceleration is different (figure 13c). The minimum of Aa is further
away from the boundary which explains the small values of Zc and the significantly
larger values of the attached volume. Note that in all cases, the attached volume is
expected to be smaller than 10 %. Such a small volume is in agreement with the
values reported in the literature (e.g. Zhang et al. 1996).

5.2. Moving boundary conditions: correction to the Frankel & Weihs solution
In the previous sections, the bridge extremities were attached to the boundaries.
When the extremities are allowed to move, other types of solution are possible. One
interesting solution is the exact solution provided by Frankel & Weihs (1985), which
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corresponds to the configuration where the bridge remains cylindrical. In this case,
the boundary conditions are

∂zA(z= 0, t)= ∂zA(z= `(t), t)= 0, (5.8)

and the bridge length expands with a constant velocity. For all time, the solution is

AFW(z, S, `0)= `0

`(t)
= 1

S
, (5.9a)

uFW = Uz
`(t)
=UZ. (5.9b)

Frankel & Weihs’ solution requires a constant velocity. The perturbation theory
developed in § 3 can be applied to extend this solution when ∂tU 6= 0. One can first
check that Frankel & Weihs’ solution (5.9a) and (5.9b) is indeed solution of the
perturbation equations (3.4) and (3.10) with ∂tU = 0. When ∂tU 6= 0, the correction
to Frankel & Weihs’ solution can be written

A− AFW = ∂tUA(FW)
a (5.10)

where A(FW)
a satisfies at leading order the equation deduced from (3.12a):

∂3A(FW)
a

∂Z3
+ S3`2

0
∂A(FW)

a

∂Z
= 2S5/2`3

0Z. (5.11)

This equation can be solved explicitly using mass conservation and the boundary
conditions deduced from (5.8), that is

∂ZA(FW)
a (Z = 0)= ∂ZA(FW)(Z = 1)= 0, (5.12a)∫ 1

0
A(FW)

a (Z′)dZ′ = 0. (5.12b)

The solution reads

A(FW)
a = 2S−1/2`0

(
Z2

2
− 1

6
+ cos(`0S3/2Z)
`0S3/2 sin(`0S3/2)

− 1
`2

0S3

)
. (5.13)

The correction to Frankel & Weihs’ solution can then be rewritten as

A− AFW

AFW
= BaF(Z, λ) (5.14)

where Ba = (ρ/σ)AFW∂tU is a Bond number associated with the dynamics and

F(Z, λ)= 2λ
(

Z2

2
− 1

6
+ cos(λZ)
λ sin(λ)

− 1
λ2

)
. (5.15)

The function F depends on a single parameter λ which corresponds to the relative
length of the bridge:

λ= `0S3/2 = `/
√

AFW . (5.16)
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FIGURE 16. (a) Shape correction F(Z, λ) to Frankel & Weihs’ solution versus Z= z/`(t)
for two different aspect ratios λ. The dashed line represents the asymptotic estimate for
small λ. (b) Critical Bond number B(c)a for the break-up of Frankel & Weihs’ solution.
The dashed line reports the critical Bond number obtained for the solution with attached
boundary conditions (figure 14c).

The function F(Z, λ) is plotted in figure 16(a) for λ= 1 and λ= 2. It diverges when
λ→π as

F(Z, λ)∼ 2 cos(πZ)
π− λ . (5.17)

As in the case with attached boundaries, this divergence is due to a resonance with
the first sloshing mode, which is present for the boundary conditions (5.12a) when
λ=π. For small λ, the function F is small and varies according to

F(Z, λ)∼ 1
180λ

3(15Z4 − 30Z2 + 7). (5.18)

This estimate is plotted as a dashed line in figure 16(a) for λ= 1. As observed, even
for this large value of λ, the asymptotic estimate is very good.

The vanishing of the surface A provides an estimate for break-up. Such a vanishing
occurs at the boundary (Z = 1), and for a critical Bond number B(c)a (λ)=−1/F(1, λ)
which is plotted in figure 16(b). This critical Bond number is also compared with
that of the solution with attached boundary conditions (shown as a dashed line) in
this figure. We observe that the critical Bond number for Frankel & Weihs’ solution
is always smaller, showing that break-up (or nonlinear transition) is a priori easier in
this case.

6. Influence of gravity
In this section, we discuss the effect of gravity and therefore assume that, in

equation (2.1b), Bo is non-zero. A typical value for Bo in a millimetre water bridge
is Bo ≈ 0.2. A priori, both the numerical study and the theoretical analysis can be
performed similarly in the presence of gravity. The first effect of gravity consists of
modifying the equilibrium shapes: they are not Delaunay curves anymore but curves
given by

∂K
∂z
= Bo. (6.1)
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FIGURE 17. Experiment on a slowly stretched water bridge: U= 0.2, Oh= 0.04, Bo= 0.5.
Equilibrium shapes are superimposed in white. From left to right: ` = 1.33, 1.66, 2.00,
2.31, 2.65, 2.96. Disk diameter is 2.86 mm and corresponds to two graduations. Dynamical
shapes remain virtually the same as static ones as long as the bridge remains in the stable
domain (`. 3 here).

Moreover, the equilibrium shapes are no longer symmetric with respect to the
mid-plane, as more fluid is found at the bottom than at the top. Typical shapes
are illustrated in figure 17. In this figure, we can observe that there is a good
agreement between the dynamical experimental shapes and the numerical equilibrium
curves obtained by solving (6.1). Though gravity alters drastically the equilibrium
shape (see figure 17), it does not actually affect the theoretical analysis. When the
elongation speed U and the acceleration ∂tU are small, the same asymptotic analysis
can be performed and the same equations for the velocity and the shape correction
are obtained in the presence of gravity upon changing AD by the new equilibrium
shape obtained for Bo 6= 0. The dependence with respect to Bo therefore only appears
via the equilibrium shape. As before, we therefore expect the velocity in the liquid
bridge to remain at leading order independent of Oh. We also expect the shape
correction to be the sum of three terms: a viscous term of order Oh U, an inertial
term of order U2 and an acceleration term of order ∂tU.

7. Conclusion

We have considered the dynamics of an axisymmetric viscous liquid bridge
stretched between two co-axial rods using the one-dimensional model of thin bridges.
Our goal has been to quantify the differences between the equilibrium shapes and the
dynamical shapes obtained by moving the rods with a small velocity and acceleration
when the surface is attached to the rods.

Whereas the Delaunay curves that define the equilibria only depend on the two
geometrical parameters `0 and S (when gravity is negligible), the dynamical curves
also vary with respect to three other parameters which are the elongation speed U,
the acceleration ∂tU and the Ohnesorge number Oh. Using a perturbation approach,
we have been able to show that the shape correction is the sum of a viscous term
proportional to Oh U, an inertial term proportional to U2 and an acceleration term
proportional to ∂tU. Explicit expressions for these shape corrections have been
obtained when the Delaunay curve is a cylinder (S = 1), which has allowed us to
put forward some speculative estimates for bridge break-up. In the theory, we have
also obtained that a non-uniform velocity field proportional to U is present in the
bridge. This velocity field is due to kinematic effects and is independent of Oh. The
variations of some characteristics of this field such as the maximum and minimum
strain rates have been analysed as functions of `0 and S. Interestingly, we have
observed that a region of compression (negative strain rate) appears close to the rods
when S becomes large.
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The asymptotic results have been validated by numerical simulations. We have
considered two situations: one where the bridge is stretched with a constant velocity;
another where the length of the bridge is oscillated. Both the velocity field and the
shape corrections have been compared to the theory for a large range of parameters
and a very good agreement has been demonstrated in both cases. The departure from
the theory has been shown to be mainly associated with free eigenmodes of the
bridge which are either excited during the transient or resonantly forced for particular
oscillating frequencies.

The effect of gravity has been briefly addressed. We have shown that it modifies
the equilibrium shape but not the main results of the perturbation theory. Finally, we
have also shown that the theory can be applied to the cylindrical solution of Frankel
& Weihs (1985) to compute the correction induced by acceleration.

As a concluding remark, we wish to recall that our analysis is based on a one-
dimensional model. Though it provides a convenient framework to study liquid bridge
dynamics, it may fail to describe adequately some situations. For example, oscillations
of one or both of the rods may give rise to recirculating flows within the liquid bridge
(see for example Mollot et al. 1993), that the one-dimensional model cannot handle.
Also, for large stretching velocities (i.e. larger than the Taylor–Culick velocity), a
boundary layer may form close to the solid boundary; this is not properly incorporated
into the one-dimensional model, and requires special treatment (cf. Stokes, Tuck &
Schwartz 2000). By contrast, when the stretching speed is low and the oscillation
amplitude is small, which is the case studied here, we expect the model to be accurate.
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