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abstract

Diving induces large pressures during water entry, accompanied by the creation of cavity
and water splash ejected from the free water surface. To minimize impact forces, divers
streamline their shape at impact. Here, we investigate the impact forces and splash evolu-
tion of diving wedges as a function of the wedge opening angle. A gradual transition from
impactful to smooth entry is observed as the wedge angle decreases. After submersion,
diving wedges experience significantly smaller drag forces (two-fold smaller) than immersed
wedges. Our experimental findings compare favorably with existing force models upon the
introduction of empirically-based corrections. We experimentally characterize the shapes
of the cavity and splash created by the wedge and find that they are independent of the
entry velocity at short times, but that the splash exhibits distinct variations in shape at
later times. We propose a one-dimensional model of the splash that takes into account
gravity, surface tension and aerodynamics forces. The model shows, in conjunction with
experimental data, that the splash shape is dominated by the interplay between a desta-
bilizing Venturi-suction force due to air rushing between the splash and the water surface
and a stabilizing force due to surface tension. Taken together, these findings could di-
rect future research aimed at understanding and combining the mechanisms underlying all
stages of water entry in application to engineering and bio-related problems, including naval
engineering, disease spreading or platform diving.

1. Introduction

We investigate the motion of a rigid wedge diving across an air-water interface. Water
entry problems have appealed to scientists and engineers alike for more than a century.
The beauty of splashes were first examined using high-speed photography by [53], and were
later studied in the context of naval engineering problems [25, 50]. While naval-oriented
research is still very active [1], understanding and predicting forces on entering objects is
also relevant for other fields, such as air/water missiles [36], aerospace engineering [43],
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diving birds [10, 42], lizard locomotion [23], prevention of injury in olympic diving [21], and
dissemination of seeds [2], aroma [16], and diseases [17, 24].

In this study, wedges of width d and opening angle α are dropped under gravity g from
a height H. They reach the air/water interface with a velocity V ≈

√
2gH. Figure 1

shows a typical sequence of events following water entry, and the corresponding vertical
force acting on the wedge’s supporting arm. Here, the entry velocity is V = 1.70 m/s, and
the wedge’s width is d = 18 mm. This sequence illustrates several generic features of water
entry. Shortly after first contact with the water surface, the vertical force quickly rises
from 0 to a peak value (B-C). The peak is very prominent and is reached before the wedge
is completely submerged. This characteristic pattern is called “slamming”. The vertical
force then decreases (C-D) and changes little once the wedge is fully submerged (D-E).
Following the wedge’s submersion (D-E-F), two visually-striking events occurs. First, an
air-filled expanding cavity is created in the wedge’s wake. Second, a curved splash is ejected
upwards and sideways from the point of impact. The ejection velocity can be significantly
higher than the wedge’s entry velocity V : the thin and fast-moving splash is subject to
aerodynamic interactions leading to non-trivial arabesques (E). This work is focused on the
description and modeling of the vertical force generated during entry, as well as modeling
the splash sheet kinematics. The first part deals with early stages of water entry (prior to
wedge’s total submersion), and in particular the transition from smooth to impactful entry
as the wedge angle increases. The second part analyzes, using a combination of empirical
observations and low-order physics-based models, the long term evolution of the splash
projected upward from the edges of the wedge during and following water entry.

1.1. Impact forces on objects entering water. The fluid dynamics literature is divided
into two types of studies: those that focus on slamming forces and other that focus on the
cavity and splash formation. [25] was the first to estimate the slamming forces on wedges
based on conservation of fluid-wedge momentum and the added mass effect. Shortly after,
[50] presented a refined model, also based on potential flow theory, in which free surface
elevation was taken into account. [57] and [58] were the first to propose a fully nonlinear
solution for the coupled fluid-wedge system, and [37] developed a conformal mapping tech-
nique that built upon these findings. In a series of publications [30, 27, 28, 29], Korobkin
offered a number of insightful analytical models of fluid entry under various conditions,
including impact of a rigid body with an attached cavity and of a perforated wedge. Re-
cently, explicit finite element methods have been employed by [7], [44], [52] and [9] to predict
slamming loads. While many theoretical and numerical models predict impact forces on
wedges of relatively small angles, there are few experimental studies that seek to validate
these predictions [54, 56, 58, 49]. Even fewer studies consider and quantify the unavoidable
three-dimensional effects of real-life experiments [58].

In the first part of this paper, we characterize the forces acting on the wedge during water
entry (before and after submersion), and we compare our experimental results to existing
theories. We show that wedges of large angle undergo “impactful” entry, because of a large
transient peak force felt before submersion. In contrast, low-angle wedges enter smoothly,
with a force gradually rising from zero to a terminal value. The transition between impactful
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Figure 1. Typical water entry sequence and force measurement, for a
α = 90◦ wedge impacting at V = 1.70 m/s. For large enough wedge angles
(α > 70◦), the compression force peaks before the wedge is fully submerged;
a smaller, quasi-constant force is observed after submersion. t = 0 is defined
as the first contact between the wedge and the water surface. The entry gen-
erate a thin and fast-moving splash, likely to interact with the surrounding
air.

and smooth entry can be predicted by a clever use of existing data and theory. We also show
that the drag force acting on the wedge after submersion is quasi-constant, and because of
the presence of the cavity, it is significantly lower than the drag force of an immersed wedge
.

1.2. Splash and cavity evolution. The study of splashes and cavities date back to the
beginning of high-speed photography [53] and continues to be the topic of numerous publica-
tions [8, 12, 4]. Most studies consider either the dynamics of the cavity or the development
of the splash. Cavities evolve relatively slowly with resptect to the objet’s velocity and
are thus easier to visualize and analyze. The retroaction of the cavity dynamics on the
trajectory of the impacting object is of interest for the military, in order to make bullets
or air/water anti-torpedo missiles reach an underwater target [8, 36]. At very large impact
velocity, low-pressure area in the object’s wake triggers cavitation [47], which affects the
stability of the object’s trajectory. At slower impact velocity, the cavity is primarily a result
of inertia. Many research contributions focus on describing, classifying, and modeling the
cavity created by various impactors [12, 4, 48, 35]. Splahes, in contrast to cavities, are thin
fast developing features of elusive nature, and, unlike cavities, they are strongly dependent
on the geometry of the object. Splashes have been extensively studied in the canonical
problem of impacting spheres. Water entry of spheres is usually accompanied by a nearly
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vertical splash curtain [53, 4]. Entry of wedges, because of the large horizontal momentum
imparted to the liquid, generally induce splashes curving outwards and downwards [20].
These splashes are generally better defined, thicker, and less sensitive to wettability than
splashes created by round objects, but they are considerably less studied than the latter.

For splashes, perhaps more than for any other aspect of water entry, the devil is in the
details. As [13] pointed out, the traditional vision of a water entry driven by inertia for
high-enough entry velocity is essentially wrong. They demonstrated that capillary effects
such as wettability have first-order effect on the cavity formation and subsequent splashes
for spheres. Likewise, [35] showed that capillary wrinkles originating from the contact line
on the sphere are responsible for the dramatic splash shape upon “buckling”. Viscosity
is also traditionally thought to be irrelevant. Lastly, the surrounding air affects various
aspects of the splash, including the ejecta [41, 55], cavity collapse in axisymetric problems
[15, 19] and quasi-two-dimensional problems [51], and surface seal [34].

Attempts to simulate splashes have been met so far with mixed results, including for
simple geometries such as wedges. In early models and simulations, the jet is either not
considered at all [50, 32], or cut-off when leaving the wedge to avoid numerical difficulties
[58, 6]. Recent contributions use smoothed particle hydrodynamics [18], level-set immersed
boundary methods [9] or boundary element methods based on potential flow theory [54, 5]
to solve the full system and account for the free jet. However, most simulations either
misrepresent the splash development [9] or fail to include potentially important parameters
such as surface tension [5]. In short, existing descriptions of the splash shape lack a proper
framework to help understand the effects of various physical forces on the splash evolution.

The second part of this study focuses on the cavity and splash evolution created by
diving wedges. Using high-speed photography to reconstruct the shapes of the cavity and
splash, we show that the cavity is self-similar for various entry velocities but the splash
is not. In order to investigate the physics underlying the splash evolution, we develop a
one-dimensional model based on the idea that the splash is primarily ballistic, and can be
represented by a succession of discrete particles ejected from the free water surface. The
model shows, in conjunction with the experimental data, that the splash shape is the result
of the interplay between aerodynamic interactions that favor bending and capillary effects
that tend to cancel curvature.

2. Experimental setup

All experiments were driven by gravity and were performed in a water-filled rectangular
acrylic tank measuring 51×26×32 cm3. To ensure straight and reproducible entry condi-
tions, a vertical tower 1.5 m in height was used to guide the falling wedge, see figure 2(a).
Wedges dropped from a height H reach the air/water interface with a velocity V ≈

√
2gH.

By varying H, the entry velocity V could be chosen in the range from 0 to 3.5 m/s. The
wedges were 3D printed using Hatchbox PLA plastic of dimensional accurary ±0.05 mm.
Two sets of wedges were printed: in the first set, the opening angle α of the wedge was
varied from 60◦ to 120◦ while the wedge width d = 36 mm and length L = 150 mm were
held constant, yielding an aspect ratio L/d = 4.2. In the second set, the aspect ratio was
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Figure 2. Experimental setup.

fixed at L/d = 4.6 while the projected area L × d was varied in the range 1400 − 5940
mm2. Additionally, 90◦ wedges of a smaller width d = 18 mm but same aspect ratio L/d
were used to check that several quantities were independent of d. The mass of all moving
parts M of the wedge and drop mechanism was around 875 g, with the mass of the wedge
itself ranging between 15 and 30 grams. The weight Mg was chosen so that it balances the
average drag and impact forces during water entry, thus limiting acceleration or decelera-
tion during water entry and allowing us to treat the velocity V of the wedge as constant
throughout water entry.

The water impact problem can be described by three non-dimensional parameters: the
Weber number We = ρdV 2/σ, where ρ = 1000 Kg/m3 is the water density and σ =
70 · 10−3 N/m is the surface tension of the air/water interface, the Froude number Fr =
V/
√
gd, where g = 9.81 m/s2 is the gravitational constant, and the Reynolds number Re =

dV/ν, where ν = 10−6 m2/s is the kinematic viscosity of water. Given the experimental
parameters, Weber numbers We were in the range 200−2000, indicating fluid inertia should
dominate surface tension effects. The Froude number Fr ranged from 1.7 to 5 in the present
experiments, indicating that hydrostatic effects may have a noticeable contribution after
the wedge is fully submerged. Lastly, the Reynolds number Re ranged between 104 and 105,
indicating that effects of viscosity can safely be ignored. It is worth noting that the relative
influence of gravity with respect to surface tension can be indicated by the Bond number
Bo = We/Fr2 = ρgd2/σ, which ranged from 45 to 180 in our experiments, confirming
surface tension should not be a major player in the forces acting on the wedge during water
entry (but will be important in splash development).

Forces acting on the wedge were measured directly by mean of a compression load cell
(FC22, Measurement Specialties), secured between the horizontal arm connected to the
sliders and the vertical rigid stem on which the wedge is mounted (see figure 2(b)). An
NI PCIe 6323 acquisition card was used to read data from the compression sensor at a
rate of 8000 Hz. A short spring was used to keep the wedge and stem in contact with
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Figure 3. Dimensional (left) and non-dimensional (right) force history dur-
ing water entry for 120◦, 90◦, and 60◦ wedges at various speeds. Note the
almost perfect collapse of the force coefficient during the early stages of en-
try (right). A prominent peak force appearing for t∗ < 1 is observed for
α = 120◦ and α = 90◦, which is considered impactful entry; for smaller
angles such as (c), the measured force gradually rises from t∗ = 0 (first con-
tact) to t∗ = 1 (wedge fully submerged): the entry is smooth. L = 150 mm,
d = 36 mm.
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the sensor during the free-fall. This small elastic force was subtracted from the presented
measurements.

High speed photography was used to characterize jet and air cavity development. Water
entries were recorded at frame rates ranging between 1600 and 9000 fps using a Phantom
Miro M-110 high speed camera. A minimum of five videos from ten experiments were
obtained for each wedge at each dropping height. Films captured drops from the front
view, side view, and perspective view.

3. Forces during water entry

We characterize the forces acting on diving wedges, before and after submersion, with
particular emphasis on the gradual transition from impactful to smooth water entry as the
wedge angle decreases.

3.1. Force measurements. Figure 3, left panel, shows the force evolution recorded by the
force sensor for three wedges α = 120◦, α = 90◦ and α = 60◦, at various entry velocities V .
As in figure 1, the force quickly rises from 0 to a positive value after impact. For α = 120◦

and α = 90◦, the force peaks after entry, with peak values in the range of 10− 40 N, then
decreases to a quasi-constant value once the wedge is fully submerged. For α = 60◦, the
force gradually increases from 0 to a terminal value: no prominent peak force is observed.
We call the first pattern “impactful entry” and the second “smooth entry”.

Given the inertial flow regime (Re > 104), we scale force by 1
2ρSV

2, where S = L× d is
the projected area of the wedge and let C = F/12ρSV

2 denote the non-dimensional force
coefficient. We scale time by the inertial time scale h/V such that t∗ = t/(h/V ) is non-
dimensional time, with t∗ = 0 being the time of impact and t∗ = 1 corresponding to the
instant when the wedge is fully submerged with respect to the undisturbed water surface.
Dimensionless data is depicted in the right panel of figure 3. At all wedge angles, the data
for different entry velocities collapses very well for t∗ ≤ 1, confirming that the force and
time scales are appropriate. From these graphs, we extract a single value of the maximum
force Cmax. We also mark the time t∗max when the maximum force happens, around t∗max =
0.66, 0.73, 1 for α = 120◦, 90◦, 60◦, respectively. For t∗ > 1, the force measurements do
not collapse. We observe larger force coefficients at smaller entry velocities, particularly
obvious for α = 120◦, which can be attributed to hydrostatic forces becoming significant as
Fr approaches unity.

These measurements are repeated with wedge angles α = 60, 75, 80, 90, 105 and 120◦,
leading to the values of Cmax and t∗max shown in figure 4(a) and (b) and table 1. Rather
intuitively, Cmax increases sharply with α, starting at Cmax = 0.65 for α = 45◦ and reaching
Cmax = 4.2 for α = 120◦, while t∗max decreases with α, starting at t∗max = 1.08 for α = 45◦

and plummetting to t∗max = 0.66 for α = 120◦. No prominent peak force was observed for
wedges with α < 75◦.

3.2. Force model. Most models of the impact force during water entry are based on
Wagner’s original work [50], which provides good predictions of the impact force for nearly
flat wedges (α ≈ 180◦), but lead to large overestimates at moderate opening angles (close
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Figure 4. (a) The maximum force coefficient increases sharply with wedge
angle α, and follows theoretical predictions by [32] (solid line); excellent
agreement is observed when Logvinovich’s two-dimensional theory is cor-
rected for finite aspect ratio L/d = 4.2 (dashed line). (b) For α ≤ 70◦,
the maximum force happens roughly when the wedge is fully submerged
(t∗max ≈ 1), while for α > 70◦, t∗max drops sharply and converges to the naive
prediction from Wagner’s theory t∗max = 2/π. (c-d) The theoretical pressure
profile can be used to refine the prediction for t∗max. Assuming the maximum
force occurs when the negative pressure area escapes the wedge (a = d/2,
circles) lead to an analytical, refined estimation (dash-dotted line in (b)).
In reality, the pressure integral (force F ) on the wedge no longer increases
when b = d/2 (triangles), leading to a second numerical prediction (dashed
line in (b)), providing the same trend as the experimental measurements.
Transition from smooth to impactful entry is expected when the expected
2D drag coefficient equals the theoretical impact force (α ≈ 79◦). 2D drag
data from [22]. In (a) and (b), red square data points denote smooth entry,
defined as the absence of prominent peak.
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to a 2-fold error for α = 120◦). Among the models that improved upon Wagner’s theory,
Logvinovich’s model [32] seems to provide the most accurate description of the maximum
force value, while also providing a good prediction of the pressure on the wedge [29, 39].
Here, we show that (i) our experimental data compares favorably with Logvinovich’s model
once 3D effects are taking into account and (ii) the transition between smooth and impactful
entry, occuring for α ≈ 70◦, can be anticipated using the same model.

Logvinovich’s model is based on potential flow theory and uses asymptotic expansions
around large wedge angles (α ≈ 180◦) to solve for the flow velocity at the wedge, leading
to an approximate pressure distribution along the wedge as a function of the horizontal
coordinate x and time t,

(1) P (x, t) =
1

2
ρV 2

[
π

tanβ

c√
c2 − x2

− c2

c2 − x2

]
.

Here, the deadrise angle β = (π−α)/2 is small, and c designates the jet root corresponding
to the full extent of the wetted region in this model (see figure 2). The evolution of c is
given by the so-called “Wagner condition”

(2) c(t) = πV t/(2 tanβ),

where V t is the wedge’s penetration distance from the undisturbed water surface. Our
experimental measurements of c(t) (see section 4.1) agree well with this prediction. The
non-dimensional pressure P (x, t)/12ρV

2 based on (1) is depicted in figure 4(c) as a function
of x/c. It is positive on most of the wetted region of the wedge but becomes negative
close to the periphery, and tends to −∞ for x → c. The sign change happens at a/c =√

1− (tanβ/π)2 (marked by circular symbols in figure 4(c)). This singularity is common
to all Wagner-based models and is usually regularized using the anzatz that only positive
pressure matters [29]: pressure should be integrated from x = 0 to x = a, which yields
(accounting for both sides of the wedge)

(3) F (t) = 2

∫ a(t)

0
P (x, t)dx = ρV 2c(t)

[
π2

2 tanβ
−K(β)

]
,

where

(4) K(β) =
π

tanβ

[π
2
− arcsin (a/c)

]
− 1

2
ln

[
1 + a/c

1− a/c

]
.

To predict the maximum force, we assume that it is reached when the wetted length c
equals the wedge’s half-width d/2, that is to say, when the splash root escapes the wedge.
From (2), one gets t∗max = 2/π ≈ 0.636, independently of α. Substituting the prediction for
t∗max into (3,4) leads to

(5) Fmax =
1

2
ρSV 2

[
π2

2 tanβ
−K(β)

]
.

In figure 4(a) and (b), we compare Fmax/
1
2ρSV

2 and t∗max (solid lines) with our experimental
data. The prediction for t∗max matches roughly with the experimental data for large α,
but the discrepancy increases sharply as α decreases. The force prediction is consistently
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α Cmax Cmax(theory) t∗max t∗max (theory)
45◦ 0.65± 0.3 0.15 1.08± 0.04 −
60◦ 0.75± 0.3 0.58 1.02± 0.04 −
75◦ 1.25± 0.3 1.24 0.83± 0.07 0.947
80◦ 1.38± 0.3 1.75 0.77± 0.09 0.833
90◦ 1.7± 0.3 2.08 0.73± 0.3 0.734
102◦ 2.78± 0.3 3.25 0.69± 0.025 0.686
120◦ 4.2± 0.3 5.15 0.66± 0.025 0.656

Table 1. Measured and theoretical force coefficient Cmax and time ratio
t∗max (occurrence of maximum force).

(about 15%) larger than our data for α > 90◦. One reason for this discrepancy stems
from the fact that the prediction is based on two-dimensional theory while our wedges are
not infinitely long (L/d = 4.2): it is thus necessary to consider three-dimensional effects.
Following the suggestion of [58], we correct Logvinovich’s two-dimensional prediction using
Meyeroff’s results [38], who calculated the added mass coefficients of rectangular plates of
various length-to-width ratio. His calculations show that in order to accurately represent
the effect of finite aspect ratio in situations where added mass plays an important role, two-
dimensional predictions have to be corrected by a factor approximately equal to 1−d/(2L).
In our case, this would predict a 12% decrease in maximum force (dashed line in figure 4(a)),
which is in good agreement with the experimental data for moderate and large wedge angles.

These predictions for Fmax and tmax are based on the assumption that the maximum
force happens when c equals the wedge’s half-width d/2. Yet, we know that the theoretical
pressure profile along the wetted length (figure 4(c)) is negative close to the jet root, namely
from x = a to x = c. To refine the prediction of tmax, we consider the maximum force
to happen when the region of negative pressure has escaped the wedge, that is, when
a = d/2, which yields t∗max = (2/π)(c/a) = (2/π)/

√
1− (2 tanβ/π)2. This improved

prediction, represented in figure 4(b) as a dash-dotted line, increases sharply as α decreases
but underestimates the experimental results, especially for moderate wedge opening angles.
To refine the prediction further, we note that the integral of the pressure profile on the
wedge continues to increase until b = d/2, as shown in figure 4(c) (triangles). Numerical
computation of this integral leads to a refined estimate of t∗max, represented as a dashed line
in figure 4(b). This estimate is now in reasonable agreement with the experimental values
for wedge angles down to α ≈ 80◦.

As the opening angle α of the wedge decreases, the peak force decreases. The predictions
and experimental data gradually diverge for smaller α. For α below 80◦, the measured
maximum force is comparable to the drag coefficient on an immersed wedge. We anticipate
that transition from impactful to smooth entry as α decreases happens when the drag force
equals the predicted impact force. Using 2D drag force data from the literature [22], we
can estimate the transition to occur at α = 79◦. This prediction is in good qualitative
agreement but overestimates the experimentally observed transition, which occurs between
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60◦ and 75◦. One reason for this discrepancy is due to the fact that the drag force acting
on diving wedges is smaller than we would expect for an immersed wedge.
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3.3. Drag force with a cavity. Once the wedge is fully submerged, it reaches a quasi-
permanent regime characterized by a relatively small vertical force (figure 5). The measured
force is significantly lower than the drag force on a fully submerged wedge of the same angle
(dash-dotted line in figure 5). The obvious difference between the two cases is the presence
of the cavity in the wake of the diving wedge. There is no systematic model of how transient
cavities affect drag on translating bodies. However, the influence of cavities on drag has
been studied extensively in the context of cavitation [26]. Following a suggestion by [58],
we compare our experimental data to cavitation results.

Results for cavitating cases show that the presence of the cavity induces a dramatic
reduction of drag, between two and three folds. The reduction depends on the cavitation
number K = (p∞ − pvap)/12ρV

2, which compares the Bernouilli pressure drop 1
2ρV

2, with
the pressure drop needed to reach vapor pressure p∞− pvap, and indicating the likeliness of
cavitation happening. V denotes the object translational velocity, and p∞ is the pressure far
away from the object. Typically, complete cavitation is reported for values up to K ≈ 0.4,
and partial cavitation happens beyond this value [26]. Because the cavities in the present
work are fully formed, a sensible range of value for K is between 0 and 0.4. Note that we
did not arbitrarily fix K to 0 as previous authors did [58]. [26] gives the following values
for steady drag coefficients for supercavitating wedges at CD = CDo(1 + K), with CDo
ranging from 0.489 to 0.745 for α = 60◦ and α = 120◦. The corresponding ranges of CD
are reported as a yellow zone in figure 5 for each wedge angle. The experimental force
measurements based on the force sensors exhibit residual oscillations, which we attribute
to the drop mechanism. Despite these osillations, the predictions proved to be in good
agreement with our experimental data. This suggest that transient (inertial) cavities affect
the drag of diving wedges the same way as cavitation does.

4. Splash Model

Snapshots of the splash and cavity shapes of a 90◦ wedge entering water at various
velocities V are shown at two time instants t∗ = 3 and t∗ = 7 in figure 7. At t∗ = 3,
the cavities and splashes corresponding to different velocities V have the same form, but
the splashes show notable differences at t∗ = 7; at larger entry velocities, splashes extend
further and develop a characteristic doubly-curved shape that we call “arabesque". The fact
that the splashes coincide well at short time t∗ = 3 but not at longer time t∗ = 7 suggests
that these variations are not due to initial conditions. In order to investigate the physics
underlying the splash evolution, we develop a one-dimensional model of the splash using
first-principles and empirical observations. The model is based on the idea that the splash
is primarily ballistic, and can be represented by a succession of discrete particles ejected
at regular interval from the free water surface and moving under the influence of gravity,
surface tension, and aerodynamic forces. Before we present the details of the models in § 4.2
and 4.3, we examine the conditions of splash ejection empirically.

4.1. Splash ejection: empirical observations. Using high-speed video recordings, we
systemically measure three relevant parameters of the splash kinematics at short times for
various wedge angle α: wetted length c, jet speed Vso, and jet angle θo; see figure 8(a).
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Raw measurements of Vso as a function of entry velocity V are shown in figure 8(b).
Clearly, Vso is linearly proportional to V , even at low entry speeds, and the coefficient of
proportionality Vso/V is an increasing function of α. In figure 8(c), we depict Vso/V versus
α, and compare it to the expansion speed of the wetted length ċ/V obtained experimentally
(purple square) and theoretically (solid line) based on equation (2). The speed of the splash
tip Vso/V is simply proportional to ċ/V , with a coefficient of 1.55±0.05 (dashed line), that
is,

(6)
Vso

V
= 1.55

(
ċ

V

)
=

1.55π

2 tanβ
.

The jet angle θo between the trajectory of the water particles in the jet and the horizontal
axis are reported in figure 8(d). Theoretical predictions of θo based on Vso/V are obtained
by assuming that the jet stays in contact with the wedge’s surface, leading to the implicit
equation for θo,

(7)
tanα

cos θo − sin θo tanα
=
Vso

V
.

Figure 8(d) shows that the theoretical predictions are in good agreement with the ex-
perimental measurements. Taken together, these observations imply that the Wagner’s
approach allows us to predict both the initial jet tip velocity Vso and jet ejection angle
θo, given a single corrective parameter (the 1.55 constant) that is independent of α. We
are now equipped to tackle events past the initial submersion of the wedge, namely the
long-term evolution of the splash shape.

4.2. Splash model: kinematics and initial conditions. We develop a discrete fluid
particles model of the splash, based on the idea that the splash is primarily ballistic. The
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splash is represented by a succession of discrete particles Pj , j = 1, 2, 3, . . . ∈ N. Particle j
is located at rj = x(Pj , t)e1 +z(Pj , t)e3, where Pj is a Lagrangian label of particle j, and it
is moving at a velocity vj = vx(Pj , t)e1 + vz(Pj , t)e3 under the influence of gravity, surface
tension, and aerodynamic forces.
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Particles are initially ejected from the water surface (z = 0) at a shooting point x(Pj , tj),
where tj represents the time of ejection of particle j. Our goal in this section is to determine
the initial conditions, shooting position and velocity, for each particle. To this end, it is
convenient to represent the velocity vj of particle j by its speed Vs(Pj , t) and pitch angle
θ(Pj , t) measured from the horizontal.

Before the wedge is fully submerged, we make the assumption that the shooting point
is located at the intersection of the undisturbed water surface with the wedge given by
x = V tj tan(α), and all particles are assumed to eject with the same velocity Vso and angle
θo (figure 9(a)). That is to say, for ejection time tj ≤ h/V , the initial conditions of particle
Pj are given by

(8) Vs(Pj , tj) = Vso, θ(Pj , tj) = θo, x(Pj , tj) = V tj tan(α).

This assumption is in agreement with the actual interface shape below the wedge (see
figure 8) in that we consider the fluid pile-up as part of the splash.

After submersion, tj ≥ h/V , the shooting point is located at the cavity wall w(z = 0) =
wo, where w is the cavity half-width and wo is the value of w at the free water surface
(z = 0), see figure 10. The initial shooting conditions are now dependent on the time of
ejection tj . Namely, the shooting velocity decreases with time and eventually decays to 0
while the base of the splash becomes steeper with time. We consider the ejection velocity
to decrease exponentially such that

(9) Vs(Pj , tj) = Vsoe
−(tj−h/V )/τs ,

where τs is a constant parameter that we set to τs = 0.025/V regardless of the wedge angle.
An implicit expression for the initial ejection angle θ(Pj , tj) can be obtained by consider-

ing continuity between the slope of the splash and the slope of the cavity w′o = dw/dz|z=0,

(10)
Vs(Pj , tj) sin(θ(Pj , tj))

Vs(Pj , tj) cos(θ(Pj , tj))− ẇo(tj)
= tan(w′o(tj)).

Here, ẇo(tj) and w′o(tj) are, respectively, the horizontal speed and the slope of the cavity
at z = 0 and t = tj .

To close the system in (10) and (9), we need a model for the time evolution of the
cavity wall w. Here, we refer to [12], who applied a slice-averaged model to the transient
dynamics of axisymmetric cavities created by spherical or cylindrical bodies. Using an
unsteady potential flow model per slice, [12] found that the evolution of the cavity radius
R can be described at each value of z by the Rayleigh-Plesset equation: RR̈ + 3

2Ṙ
2 = ∆p,

where ∆p = −gz is the pressure difference between the inside and the outside of the cavity
at depth z assuming atmospheric pressure inside the cavity. This equation is not directly
applicable to wedges – one would have to derive a new analytic expression for the slice-
averaged flow potential assuming the wedge is infinitely long. However, because our wedges
have a relatively short aspect ratio L/d, we make the assumption that the equation derived
in [12] applies in a modified form. Namely, we postulate that

(11) wẅ +
3

2
Ccẇ

2 = −gz
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where Cc is an ad-hoc parameter (equal to 1 for axisymmetric cavities). By definition, Cc
is independent of V , but we expect it to depend on the geometry of the wedge, represented
by the aspect ratio L/d and opening angle α. The value of Cc is adjusted for each wedge,
by matching the cavity dynamics to high-speed experimental images. To obtain the cavity
dynamics, we solve (11) per slice for all slices between the top of the submerged wedge and
the undisturbed water surface subject to initial conditions w(t = 0) = d/2 and ẇ(t = 0) =
V tanα.

Put together, (9), (10) and (11) form a closed set of equations that determine the initial
conditions Vs(Pj , tj), θ(Pj , tj) and Xj for the ejection of particle Pj for tj ≥ h/V .

4.3. Splash model: force balance. Particles are shot at regular intervals of time in
such a way to be initially separated by a constant distance d`o. The mass per unit length
attributed to each particle is δm = ρeod`o, where eo is the initial thickness of the splash
sheet assumed to be constant during splash ejection. Each particle is subject to the following
forces: weight δmg, drag FD, surface tension Fσ, and Venturi-induced suction FV. All
forces are expressed per unit length of the splash sheet unless otherwise stated. The force
balance on particle j is given by

(12) δm
dvj
dt

= δmg + FD + Fσ + FV.

Our model bears similarity with previous models developed in the context of moving fluid
sheet [14]. But it goes further in that it takes into account the sheet stretching and includes
original contributions such as Venturi-induced suction. Drag FD on particle j is calculated
by considering the splash segment ∆rj = rj−1 − rj+1 of length d`j = ‖∆rj‖, moving with
velocity vj at an angle of attack ψj defined as the angle between vj and ∆rj . This leads
to [3]

(13) FD = −1

2
CD sin2(ψj)ρad`j‖vj‖vj .

Here, CD designates the drag coefficient for when the element is perpendicular to the
incoming flow, which we fix at CD = 2.5 for all experiments. The drag force is calculated
using the absolute traveling velocity of the fluid particle, and not its velocity relative to the
ambient air. The effect of the air flow is considered independently in the Venturi-suction
force made explicit later on in this section.

Surface tension is accounted for in the most straightforward way: each particle experi-
ence a longitudinal traction of magnitude σ from its closest neighbors, as represented in
figure 10(b). For j 6= 1, one has

(14) Fσ = σ

(
rj−1 − rj
‖rj−1 − rj‖

+
rj − rj+1

‖rj − rj+1‖

)
.

This force is normal to the local tangent ∆rj , and acts as a restoring force: it tends to
cancel any shape curvature. The particle at the tip (j = 1) is a particular case: surface
tension results in only one longitudinal force directed towards its next neighbors, leading
to the retraction of particle at the tip (figure 10(c)). This retraction is observed in systems
such as free sheets and ligaments [33, 31]. The speed of retraction, relative to the sheet,
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Figure 11. (a) Average axial velocity into the chamber is determined using
volume conservation. (b) Typical calculated axial flow field (purple), and
resulting suction force on the sheet (blue).

is constant and known as the Taylor-Culick velocity Vσ =
√

2σ/ρh [45, 11]. To account
for capillary retraction in our model, the receding particle of initial mass δm has to merge
with its successive closer neighbors, as shown in figure 10(c). When merging happens, (i)
the new particle’s mass increases by δm, (ii) the new particle is positioned at the center
of mass of the two former particles, and (iii) the new particle’s momentum is the sum of
the momentum of the the two former ones. Given these conditions, we observe that the
retraction speed of the tip particle quickly converged to Vσ, independently of the merging
criteria (inter-particle distance).

The last force considered in this model, that has a significant effect on the late-stage
development of the sheet, is a Venturi-induced suction. This suction happens because the
motion of the splash dome induces an axial flow of air rushing in to fill the expanding
chamber beneath it, as represented in figure 11. The air is accelerated through the gap
between the undisturbed water surface and the lower part of the splash, causing the pressure
to drop and generating a downward suction. To calculate this suction force, we begin by
evaluating the volume Ω(x, t) of the chamber under the splash

(15) Ω(x, t) =

∫ x

xo

Z(x̃, t)dx̃,

where xo is the position of the base of the splash and Z(x, t) refers to the local height of
the splash above the free water surface. Assuming the chamber is two-dimensional, that
is, no flow in the direction perpendicular to the drawing plane, the average volume change
∆Ω(x, t) = Ω(x, t+ ∆t)−Ω(x, t) of the splash is related to the average flow U(x, t) passing
through the section Z̄ = 1

2 [Z(x, t) + Z(x, t+ ∆t)], yielding

(16) U =
1

Z̄

∆Ω

∆t
.

Using Bernoulli’s principle between a position far away from the splash and the bottom
of the sheet, we can estimate the pressure drop as ∆pv = −1

2ρa(kU)2, where kU is the
corrected axial velocity. The correction factor k accounts for the difference between the real



20

system and the idealized model, including non-uniformity of this velocity in the vertical
direction and three-dimensional effects. We expect k to depend on α. In particular, k
should converge towards 1 as α increases because the splash flies lower and the lubrication
approximation becomes therefore more justified. We adopted k = 1.5 for all computations
presented in section 5 (α = 120◦).

The magnitude of the suction force FV at particle Pj is given by ∆pvd`j , where ∆pv is
evaluated at x = x(Pj , t) and d`j = ‖∆rj‖ as previously defined; The direction of FV is
along the local normal ∆r⊥j /‖∆rj‖ to the sheet, namely,

(17) FV = −1

2
ρa(kU)2∆r⊥j .

We substitute expressions (13), (14) and (17) for the forces due to drag, surface tension
and Venturi-induced suction into (12). The resulting equations are integrated using an
explicit forward Euler method with typical time step dt = 10−6. The initial distance
between particles d`o = 100 µm is chosen to be of the order of the sheet thickness.

5. Splash Evolution

Figure 12 presents the evolution of the splash following the impact of a 120◦ wedge in
water at V = 1.92 m/s. The ejecta deforms into a fairly complex shape, characterized by
two inversions of curvature from its base to its rim. Of particular interest is the formation of
a dip, resulting from the strong downward pull of the thinnest and lowest part of the splash.
As we demonstrate in the following, the existence of this singular feature is tied to two keys
ingredients: the generation of a kink at short times and the growth of this kink, favored
by aerodynamics and hindered by surface tension (figure 12(b-d)). We also show that for
moderate and high wedge angles, Venturi effect is the dominant aerodynamic force driving
the splash deformation. We illustrate the physical concepts with experiments corresponding
to a particular case: a 120◦ wedge of width d = 36 mm. However, we emphasize that the
model and all discussions apply to wedges of various opening angle and aspect ratio.

To highlight the effect of entry velocity, we reproduce in figure 13(a) three snapshots
for gradually increasing entry velocity V = 1.11, 1.53, and 1.92 m/s, taken at the same
dimensionless time t∗ = 2.6. The snapshots are similar in many ways. Looking below
the free water surface, the wedge’s penetration and cavity shapes are virtually the same.
Above the free surface, the splash shapes share some similarities. For instance, the sheet
rim, at the far right of each picture, is nearly at the same location. There is, however,
one major difference between the three snapshots: the depth of the depression. In the
left panel, the lowest part of the dip is at about half the height of the dome, while in
the right panel, the depression nearly reaches the water surface. This difference can be,
erroneously, attributed to the effect of drag on the fast-moving sheet. We shall show that
this idea is essentially wrong, and while drag does have a significant effect on the water
sheet, it only contributes little to the strong downward pull the dip of the splash sheet is
subject to. Figure 13(b) uses our model to quantify the effect of various forces on the splash
shape. Drag and surface tension, alone or combined, generate splash shapes that are nearly
identical at different entry velocities (labeled by color). Venturi suction is needed to be
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Figure 12. (a) Snapshot taken 15 ms after impact of a α = 120◦ wedge
in water at V = 1.92 m/s, and (b-d) preceding time-evolution of the splash
sheet; snapshots are 3.1 ms apart. The leading part of the sheet is ejected
with a speed Vs ≈ 4.5 m/s. Note the strong downward suction of part of the
splash sheet (white arrows) leading to its rapid fragmentation. Computed
shapes are superimposed in white.

able to reproduce correctly the observed shapes and variation with V : the splash shapes,
computed with all forces, are superimposed onto figure 13(a), showing excellent agreement
between the 1D model and the experimental observations.

5.1. Splash depression. In order to elucidate the nature of the vertical force causing the
depression in the splash sheet, we examine the dynamics of the dip. In figure 14, we measure
the vertical acceleration γ of a marker located at the local minima in the dip, designated
by a red dot. The measurements are taken shortly after the downward dip becomes clear,
in the time interval between the first two snapshots of figure 14. We find that acceleration
is an increasing function of the splash velocity Vs and, consequently, of V , with values
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Figure 13. (a) Experimental snapshots and corresponding computed
shapes taken at t∗ = t/(h/V ) ≈ 2.8 after impact for increasing impact
velocity V : 1.11 m/s - 1.53 m/s - 1.92 m/s. Note that the dip in the splash
sheet (black arrow) gradually swells as velocity increases. The third panel
shows the last computable shape at t∗ ≈ 2.6, for which the thinning ratio
is emin/eo ≈ 1/30. (b) Quantification of the effect of the various forces.
While neither drag or surface tension can account for the bending, Venturi-
mediated suction does.

well above the gravitational acceleration: around 10 g for the slowest velocity, up to 90 g
for Vs = 2.35 m/s. More interestingly, we find that for Vs > 7, γ is proportional to V 2

s ,
suggesting the downward force has an aerodynamic origin.

We push the analysis further in order to determine the local thickness e1 (and, thus, eo)
and to derive a criterion for the growth of the dip. To this end, we write the force balance
in the vertical direction on a small fluid element of length d`, width L, and thickness e1.
The forces are drag FD, surface tension Fσ acting upwards, and an aerodynamically-related
downward suction FV = 1

2ρad`LV
2
s . We ignore the drag contribution because the vertical
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Figure 14. (a-b) Quantification of the strong downward pull on the
thinnest (e/eo ≈ 0.5) part of splash sheet. When surface tension effects
are negligible, the acceleration is proportional to V 2

so, suggesting a purely
aerodynamic force. Assuming the associated aerodynamic pressure scales as
1
2ρaV

2
s leads to an indirect estimate of the sheet thickness eo. (c) Visual-

ization of the fluid motion around the splash at t∗ = 0.7 for V = 1.36 m/s
using oil droplets, highlighting the axial flow into the expanding chamber
beneath the splash sheet. The estimated average axial velocity (white) from
mass conservation show good agreement with the experiment. The splash
sheet and the velocity of individual particles within the sheet as shown in
black.

velocity of the marker is at least 5 times smaller than Vs. We are left with the force balance
in the vertical direction ρe1Ld`γ = Fσ − FV . Dividing throughout by Ld`, we get the
balance law in terms of pressure difference between a capillary contribution ∆pσ and an
aerodynamic contribution ∆pV = 1

2ρaV
2
s ,

(18) ρe1γ = −∆pσ + ∆pV .

From (18), we expect the growth of the dip to be inhibited when the restoring effect of
surface tension overcome the destabilizing effect of the suction pressure.

To derive a criterion for predicting the dip growth, we assume that the local radius
of curvature of the splash scales as the wedge’s lateral size d, in qualitative agreement
with observation. The capillary pressure contribution is thus ∆pσ ≈ 2σ/d across the two
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interfaces. Substituting into (18), we get the following criteria for the growth of the dip:
1
2ρaV

2
so > 2σ/d. For d = 36 mm and ρa = 1.25 Kg/m3, the criteria yields Vso > 2.5 m/s.

Our experimental trials correspond to Vso between 4 and 10 m/s, for which we always see
dip growth, as expected. This criterion corresponds to Wea > 4 when rewritten in terms of
a modified Weber number Wea = ρaV

2
sod/σ. Unlike the Weber number commonly used in

impact problems, Wea depends on the density of air instead of water.
Equation (18) also yields an estimate of the local thickness e1 = (12ρaV

2
so − 2σ/d)/ργ.

A value of e1 ≈ 75 µm is obtained based on this expression; see inset of figure 14(b).
According to figure 14(a), we consider e1/eo ≈ 0.5 and get that eo ≈ 150 µm, a value that
we adopted for all computations presented in this work.

5.2. Effect of non-dimensional parameters on splash shape. The modified Weber
number Wea reflects the competition between surface tension and aerodynamic suction. In
figure 15(a) is a depiction of the expected splash shapes for various Wea. For low Wea, the
splash is shorter due to capillary retraction, and flatter because surface tension is preventing
bending. For higher Wea numbers, the bending become more pronounced and the splash
shapes reach further.

There are, however, two other effects that the splash shape depends on: drag and gravity.
The primary effect of drag is to slow down the splash, in a fairly uniform fashion. One way
to estimate the effect of drag on the splash shape is to calculate the relative deceleration
of a particle along its trajectory. Let’s consider the motion of a slice of splash, of mass
δm = ρeod`, traveling at velocity v, over a distance proportional d, and subject to a drag
force FD = 1

2CDρad`v
2. According to Newton’s second law of motion, the deceleration can

be approximated by ρeo∆v/∆t = 1
2CDρav

2, which leads to, upon substituting ∆t ≈ d/v,

(19)
∆v

v
≈ 1

2
CD

ρa
ρ

d

eo

The quantity I is independent of v and thus of the entry velocity V , emphasizing that
drag is not responsible for the various degrees of splash bending observed for different entry
velocities V . However, the shape of the splash is affected by changing I, either by varying
the air-water densities or by changing the dimensions of the wedge. Figure 15(b) shows
the effect of I on the splash shape. Smaller I (thinner or lighter sheet) produces shorter
splashes, without affecting the shape of the splash itself.

Lastly, we redefine a Froude number based on the splash velocity, Frs = Vso/
√
gd, which

reflects the competition between aerodynamic forces and gravity. Figure 15(c) shows that
decreasing Frs (increasing gravity) induces a global downward motion and tilting of the
whole splash. Significant differences are expected starting at Frs = 4. The experiments
presented before are in the range Frs = 7.7 − 15, confirming gravity has indeed negligible
impact on the splash shape.

5.3. Sheet fragmentation. The strong downward motion of the dip has stretches the
water sheet. To estimate the stretching ratio, given the initial sheet thickness that we
estimated in the previous section (eo = 150 µm), we need an estimate of the sheet thickness
emin of the splash sheet at its lowest and thinnest point. Fortunately, we have access
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Figure 15. Snapshots taken at t = 2.5 showing the effect of the three
non-dimensional parameters affecting the splash shape: Wea = ρaV

2
sod/σ,

I = CD(ρa/ρ)d/eo and Frs = Vso/
√
gd.

to emin by observing a spontaneous puncture of the sheet. Figure 16 presents the time
sequence of the expansion of a hole in the bottom of the sheet at t∗ ≈ 2.5. The hole
expands in all directions at a velocity Vσ =

√
2σ/ρemin, known as the Taylor-Culick velocity

[45, 11]. We measure Vσ = 5.25 ± 0.05 m/s and calculate emin = 5.1 ± 0.3 µm. This is
about 30 times smaller than the estimated eo, in agreement with the maximum stretching
ratio of last computable shapes of figure 13. More importantly, it underlines the dramatic
stretching induced by the the downward suction. These calculations are the first steps
towards developing a low-order model of fragmentation to be pursued in future work.
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Figure 16. (a-b) Front view of the splash at t∗ ≈ 0.85 for V = 1.15 m/s
showing the spontaneous opening of a hole on the thinnest part of the dip.
(c) The hole expansion velocity is 2Vσ, where Vσ =

√
2σ/ρaemin is the

Taylor-Culick velocity, and provides an indirect measurement of the local
sheet thickness emin ≈ 5 µm, 30 times smaller than the estimated initial
sheet thickness eo.

6. Conclusion

We considered the dynamics of diving wedges. In the first part, we studied the force
applied to the wedges during entry. We showed that while sharp wedges enter the water
smoothly, obtuse wedges experience a large transient peak force before total submersion.
The transition between smooth and impactful entry happens for α ' 70◦. Our experimental
measurements of the maximum force and the time of occurrence compare well with existing
impact force theories [32], after incorporating corrections due to finite aspect ratio L/d of
the wedge [38]. We also showed that, after submersion, diving wedges are subject to smaller
drag forces, about two-fold smaller, than the drag forces on immersed wedges. We show
that this difference is due to the presence of the cavity, and that the magnitude of the drag
is well predicted using existing cavitation theory, even though the origin of the cavity is
different.

The second part of this study focused on the dynamics of the splash. We showed that
while the velocity at entry doesn’t have any appreciable effect on the shape of the cavity, as
noted by previous authors [12], it does have a significant effect on the splash shape. Large
velocities generally lead to increasingly more ample and further reaching arabesques. We
proposed a 1D model of the splash, taking into account the physical forces acting on the
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ejected water sheet. We identified a Venturi suction force, because of the air rushing in
between the sheet and the water surface. This phenomenon is similar to the one observed
by [46] for impact of drops in water, but at a much larger scale and smaller velocity, allowing
better visualization and seeding. The shape of the splash is driven by a competition between
Venturi suction, driving the instability, and surface tension that acts as a restoring force.
For low-flying splashes, namely those created by large wedge angles, the Venturi suction
overcomes surface tension and the splash sheet collapse onto the water surface.

The 1D splash model satisfactorily captures the splash development, but it can be im-
proved in several ways. First and foremost, one can take into account the water pile-up
under the wedge. The main change would be that the occurrence of full submergence
will happen quicker, and as a result, the outermost, straight portion of the splash will be
shorter, most likely improving the model’s fidelity. To complete this approach, one would
have to consider the pressure profile on the wedge to infer the initial conditions given to the
water particle until the wedge is fully submerged with respect to the undisturbed surface.
Although harder to implement, this method would bridge the gap between the pressure
profile and splash shape: the kink in the splash shape would be expected to form shortly
after the jet root escapes the wedge’s edge, because of the large pressure in this portion of
the wetted region.

Another direction to improve the model is to account for the thickness of the splash and
its dynamic evolution. Some impact models suggest that thickness (measured at the jet
root) is solely a function of the size and opening angle of the wedge [40], while the thickness
scale

√
νD/Vs, commonly used in sphere impact problems, include both splash velocity

and viscosity [46]. Additionally, the thickness is expected to vary slowly along the splash
sheet, being thinner at the tip area (excluding the rim), and thicker closer to the base.
To our knowledge, little is known about this dependence, especially after the jet root has
escaped. A better understanding of the mechanisms governing the splash thickness would
form a first step towards developing a fragmentation theory.
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