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Passive flight in density-stratified fluids
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Leaves falling in air and marine larvae settling in water are examples of unsteady
descents due to complex interactions between gravitational and aerodynamic forces.
Understanding passive flight is relevant to many branches of engineering and science,
ranging from estimating the behaviour of re-entry space vehicles to analysing the
biomechanics of seed dispersion. The motion of regularly shaped objects falling
freely in homogenous fluids is relatively well understood. However, less is known
about how density stratification of the fluid medium affects passive flight. In
this paper, we experimentally investigate the descent of heavy discs in stably
stratified fluids for Froude numbers of order 1 and Reynolds numbers of order
1000. We specifically consider fluttering descents, where the disc oscillates as it
falls. In comparison with pure water and homogeneous saltwater fluid, we find
that density stratification significantly enhances the radial dispersion of the disc,
while simultaneously decreasing the vertical descent speed, fluttering amplitude and
inclination angle of the disc during descent. We explain the physical mechanisms
underlying these observations in the context of a quasi-steady force and torque model.
These findings could have significant impact on the design of unpowered vehicles
and on the understanding of geological and biological transport where density and
temperature variations may occur.

Key words: biological fluid dynamics, flow–structure interactions, stratified flows

1. Introduction
Stably stratified fluids are found throughout nature in lakes, ponds, oceans, the

atmosphere and even in the Sun. For example, apart from the upper layer and
isolated regions, the ocean is generally stably stratified; the vertical density gradient,
measured from the ocean floor, is negative while the vertical temperature gradient,
if any, is positive (Staquet 2005). This stable stratification is prevalent in isolated
environments such as pores and fractures where mixing is negligible, and can lead to
intense biological activities and accumulation of particles and organisms (MacIntyre
et al. 2014).

In engineering, stable stratification can be utilized for heat and mass transport
problems, such as cooling of nuclear reactors (Zhao & Peterson 2010) and energy
generation from solar ponds (Lin 1982). Stratification plays an important role in
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Passive flight in density-stratified fluids 201

engineering design and analysis of submerged objects since density variations in
the fluid may influence the object’s motion. A notable example is the ‘dead-water’
phenomenon (Maas & van Haren 2006), where a boat on the surface experiences
an increase in drag due to low-pressure build up behind it from internal waves
being generated along the interface of two-layer stratified fluids (Mercier, Vasseur &
Dauxois 2011). This phenomenon exists when a layer of lower-density fluid, such as
fresh water, overlies higher-density fluid, such as sea water, at the mouth of a river
or near melting glaciers. In swimmers, Ganzevles et al. (2009) found that swimming
strokes are less efficient in stratified fluid and swimming speeds are slower by as
much as 15 %. Enhanced drag was also observed in horizontally moving spheres by
Lofquist & Purtell (1984) and later by Lin, Boyer & Fernando (1992a) and Lin et al.
(1992b), with changes in the drag coefficient being a function of the stratification
level. While most studies focused on horizontal motion in stratified fluids, similar
changes in behaviour have been observed in vertically moving objects (see Torres
et al. 1999, 2000; Hanazaki, Kashimoto & Okamura 2009; Yick et al. 2009; Camassa
et al. 2010; Doostmohammadi, Dabiri & Ardekani 2014). For example, Torres et al.
(1999) found an increase in drag on a sphere settling in a stably stratified fluid due
to a buoyant jet forming behind the sphere.

In this paper, we experimentally investigate the motion of rigid discs falling
freely in a vertically stratified fluid of saltwater solution (figure 1). Even without
stratification, the fluid–structure interactions lead to rich descent dynamics that
have attracted the attention of scientists since the early observations of Maxwell in
1853 (Maxwell 1990). In homogenous fluids (constant density), the descent motion
depends on the Reynolds number Re and the dimensionless moment of inertia I of
the falling object. The Reynolds number is defined as Re = ρUd/µ, where d and
U are the diameter and terminal velocity of the disc while ρ and µ are the density
and viscosity of the fluid, respectively. We estimate the disc’s terminal speed as
the speed at which the disc’s weight balances buoyancy and drag forces. We obtain
U=
√

2eg|ρdisc/ρ − 1|/CD, where ρdisc is the density of the disc, e its thickness and g
is the gravitational constant equal to g= 9.81 m s−2 (see figure 1a). In calculating U,
we set the drag coefficient to CD = 1.2, consistent with the value for a disc normal
to a uniform flow (see Hoerner 1965). The dimensionless moment of inertia is given
by I = πρdisce/64ρd. Based on (Re, I), the descent motion of the disc falls into one
of four main descent regimes: steady, fluttering, tumbling or chaotic. In figure 2, we
map the four descent regimes onto the phase space (Re, I) based on the results of
Field et al. (1997).

Starting from the fluttering regime, we systematically vary the fluid environment in
order to examine the effect of changes in the fluid density on the fluttering behaviour.
In particular, we consider three fluid environments: pure water, constant-density
saltwater (larger than that of pure water) and stratified saltwater (density varying
linearly from pure water to saltwater). We choose the parameters carefully so that
in all three environments, (Re, I) lies robustly in the fluttering regime, as detailed in
the inset of figure 2. We reconstruct the descent trajectories and orientation of the
fluttering disc and we analyse the effect of stratification on the descent behaviour.
We find that stratification significantly decreases the vertical descent speed, fluttering
amplitude and inclination angle of the disc, while simultaneously increasing its radial
dispersion (horizontal distance from drop location). Our findings are consistent but go
beyond current numerical and experimental observations of two-dimensional ellipses
in stratified fluids (Hurlen 2006).

This paper is organized as follows. A brief overview of the literature on passive
flight in homogenous fluids is presented in § 2. A description of the experimental
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FIGURE 1. (Colour online) (a) Disc of diameter d, thickness e and density ρdisc at an
inclination angle θ defined as the angle between the vertical z-direction and the normal
to the disc. (b,c) Side and top views of the experimental set-up used to record the disc’s
landing location and 3D trajectory, respectively; the mirror in (c) captures an orthogonal
view necessary for 3D reconstruction. (d) Electromagnet release mechanism prior to
release with the disc and after the disc is released. (e) Two-tank experimental free-drained
set-up used to generate a stable linear density profile in the tank. ( f ) Schematic of the
tank set-up with a sample reconstructed trajectory. The coordinate system is centred at the
initial release location. The landing locations for multiple consecutive drops are shown in
red and used to compute the landing distribution.

methods is given in § 3. The resulting experimental observations are presented in § 4.
In § 5, we discuss the physical mechanisms underlying these observations. Based on
these mechanisms, we formulate in § 6 a two-dimensional quasi-steady model that
include forces and moments that arise from density stratification. Taken together, the
experimental results and analytical model explain how density stratification decreases
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FIGURE 2. Discs freely falling in homogeneous fluids belong to one of four descent
regimes: steady, fluttering, chaotic or tumbling. These regimes are mapped onto the
parameter space (Re, I) based on the results of Field et al. (1997). The parameter values
explored in this paper are highlighted: constant density fluid (E) consisting of pure water
ρ/ρw= 1, saltwater density values ρ/ρw= 1.048 and ρ/ρw= 1.102 and stratified saltwater
fluid (@) at two levels of stratification Fr = 2.34 and 1.26. For stratified fluids, we
computed I and Re using the average density values.

the vertical descent speed, fluttering amplitude and inclination angle of the disc. In § 7,
we probabilistically examine the effect of stratification on the radial dispersion of
the disc by comparing the probability distribution function (p.d.f.) of landing sites in
density-stratified fluid to that in pure water. We find that stratification enhances radial
dispersion. We conclude in § 8 by commenting on the relevance of these results to
engineering and biological applications.

2. Overview of passive flight in homogeneous fluids
We briefly review the literature on objects freely falling in homogeneous fluids.

Willmarth, Hawk & Harvey (1964) were the first to experimentally construct a phase
diagram (Re, I) that clearly showed the transition from steady to unsteady (fluttering
and tumbling) descent motions. Stringham, Simons & Guy (1969) performed similar
experiments with spheres, cylinders and discs, and focused on computing drag
coefficients on the descending objects for a wide range of Reynolds numbers. The
phase space of Willmarth et al. (1964) was later refined in Field et al. (1997) to
include the boundaries between the fluttering, chaotic and tumbling regimes (see the
left panel of figure 2).

Numerical investigations of thin discs and cards falling freely in a homogeneous
fluid were conducted by Pesavento & Wang (2004), Andersen, Pesavento & Wang
(2005a,b), Jin & Xu (2008), Auguste, Magnaudet & Fabre (2013) and Chrust, Bouchet
& Dušek (2013). In addition, Pesavento & Wang (2004) and Andersen et al. (2005a,b)
formulated quasi-steady force models similar to those in Tanabe & Kaneko (1994)
and Belmonte, Eisenberg & Moses (1998). The associated nonlinear dynamics was
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204 T. Lam, L. Vincent and E. Kanso

analysed in Kuznetsov (2015), showing the existence of fixed points, limit cycles,
attractors and bifurcations. Jin & Xu (2008) used a moving mesh method for the
Navier–Stokes equations and showed good agreement between experimental and
computational trajectories, while clarifying some discrepancies noted in Andersen
et al. (2005a). Jones & Shelley (2005) and Michelin & Smith (2009) used low-order
representations of the fluid in the context of the inviscid vortex sheet and unsteady
point vortex models to shed light into the role of vorticity in destabilizing the descent
motion.

Auguste et al. (2013) numerically explored the parameter space (Ar, I), where the
Archimedes number Ar is proportional to Re. They focused on the range Re < 300
(Ar < 110) and identified non-planar sub-regimes of the fluttering and tumbling
regimes, which they referred to as hula-hoop (gyrating while fluttering) and helical
autorotation (helical tumbling). Chrust et al. (2013) used non-dimensional mass and
the Galileo number G, expressed as Ar =

√
3/4πG, and focused on the range of

G< 500. In our experiments, G> 750 and Ar> 366.
Experimentally, the hula-hoop behaviour was investigated by Zhong et al. (2013)

using dye visualization and particle image velocimetry (PIV) to highlight the fluid–
structure interactions in these fluttering motions. Lee et al. (2013) looked at transitions
from two-dimensional fluttering to spiral motions and noted a critical dimensionless
moment of inertia I where the transition occurs. Heisinger, Newton & Kanso (2014)
dropped discs repeatedly in water to determine the p.d.f. associated with the landing
positions in each of the four descent modes (steady, fluttering, chaotic and tumbling).
Vincent, Shambaugh & Kanso (2016) investigated the falling behaviour of annular
discs in the (Re, I) parameter space and found that the central hole stabilizes the
descent motion of the disc.

3. Methods

To create linear density stratification in the lab, we used the two-tank method
proposed by Fortuin (1960) and Oster (1965). This method is used widely owing
to its simplicity and robustness (Hill 2002; Spedding 2002; Economidou & Hunt
2009). Fluid from a pure water tank and a saltwater tank is free-drained into a third
reservoir as shown in figure 1(e).

In all experiments, we used a single acrylic disc of density ρdisc = 1143.7 kg m−3,
diameter d = 2.54 cm and thickness e = 2 mm (see figure 1a), leading to a
dimensionless moment of inertia I = 0.00442. We considered a 60-gallon cubic
acrylic tank of dimension 0.60 m on each side. We released the disc just below
the surface of the fluid using an electromagnetic release mechanism (figure 1d).
In all experiments, the disc was initially horizontal and was released with zero
initial conditions, barring small uncertainty introduced by the release mechanism. To
determine this uncertainty, a heavy disc made of steel was released in air ten times.
The location of the disc when it reached the bottom of the tank was recorded with
a top-mounted camera (figure 1b). To prevent the disc from sliding after landing,
a grid mesh was added to the bottom of the tank. The standard deviation of the
landing position in air was found to be less than 1.5 % of the descent height h. In
recording these data points, it was convenient to introduce a Cartesian coordinate
system (x, y, z) with origin located at the site of the release mechanism and z-axis
pointing vertically upward (figure 1f ).

In each experimental trial, the disc travelled a vertical distance h = 0.53 m to
reach the bottom of the tank. We recorded the descent motion using a high-resolution
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Case I Re ρ/ρw G Ar Fr Ri N (rad s−1) U (cm s−1)

Water 0.00442 1934 1.000 1328 649 ∞ 0 0 6.85
Saltwater-1 0.00422 1608 1.049 1104 539 ∞ 0 0 5.43
Saltwater-2 0.00401 1094 1.102 751 367 ∞ 0 0 3.52
Stratified-1 0.00433 1812 1.020 1244 608 2.34 331 1.06 6.30
Stratified-2 0.00423 1600 1.050 1099 537 1.26 1011 1.69 5.40

TABLE 1. Key dimensional and non-dimensional parameters explored in this paper. An
average fluid density value is used to compute quantities for the stratified cases. Here U
is the terminal speed where the weight is balanced by buoyancy and drag forces.

monochrome digital video camera (Point Grey Grasshopper3) set to a moderate frame
rate (30–50 fps). A properly positioned mirror was used to simultaneously capture
a side view of the disc for 3D reconstruction purposes (figure 1c). The position
(x, y, z) of the centre of the disc and its orientation represented by the direction of
the unit vector n normal to the disc were reconstructed directly from the high-speed
photography using an in-house image processing algorithm (Heisinger et al. 2014;
Vincent et al. 2016). The instantaneous velocity was determined by taking the time
difference between consecutive frames. Successive descents are approximately 10 min
apart or longer to ensure that the fluid returns to a quiescent state.

We considered three fluid environments: (i) pure water with uniform density
ρw=1000 kg m−3; (ii) constant-density saltwater obtained by uniformly increasing the
salt concentration, using salt with >99.5 % NaCl; (iii) density-stratified fluid obtained
by linearly increasing salinity with depth, with density gradient γ = dρ/dz < 0
and density profile ρ(z) = ρw + γ z. We considered two stratified environments with
density increasing linearly from ρ/ρw= 1 at z= 0 to ρ/ρw= 1.060 and ρ/ρw= 1.153
at z=−h, resulting in respective stratification density gradients of γ =−114 kg m−4

and γ =−290 kg m−4.
In the stratified cases, we define the internal Froude number Fr = U/Nd. Here,

N = (−γ g/ρw)
1/2 is the Brunt–Väisälä (stratification) frequency, or the natural

frequency of oscillation of a vertically displaced fluid parcel in the stratified fluid. The
Froude number reflects the stability and strength of the stratification. A small Froude
number means strong, stable stratification, while Fr = ∞ denotes the absence of
stratification (uniform density). The Froude number for the two stratified environments
we considered are Fr= 2.34 (N= 1.06 rad s−1) and Fr= 1.26 (N= 1.69 rad s−1). For
Fr = 1.26, the density at the bottom of the tank ρw − γ h = 1154 kg m−3 is greater
than ρdisc, causing the disc in some experiments to come to a stop before travelling
the entire depth h. We therefore limited the trajectory reconstruction analysis to 0.65h
(0.35 m). The average fluid density (ρ = ρw − 0.65γ h/2) encountered by the disc is
given by ρ/ρw = 1.02 for Fr= 2.34 and ρ/ρw = 1.05 for Fr= 1.26. Table 1 lists the
key parameters used throughout this paper.

4. Experimental observations
We compare the descent behaviour of the disc in a homogenous fluid to that in a

stratified fluid. Figure 3 shows two individual trajectories for pure water and stratified
fluid of Fr = 1.26, respectively. In figure 3(b), we compare two segments of the
descent trajectories taken shortly after release (top row in figure 3b) and at later
depth (bottom row in figure 3b). Each segment includes a full oscillation cycle of the
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FIGURE 3. (a) Sample trajectories reconstructed from discs released with zero initial
conditions in water (grey) and in stratified fluid (black), showing enhanced radial drift
from the initial drop location and decrease in side-to-side fluttering amplitude. The axis
of the disc (normal arrows) indicates its inclination from the vertical. The transient part of
the descent in water is characterized by a large out-of-plane component. (b) Snapshots of
two fluttering periods at different depths for water and stratified fluid (Fr= 1.26), showing
the vertical and horizontal contraction of the trajectory and the increase of the fluttering
period in the stratified case.

fluttering disc. In pure water, the amplitude and period of oscillation is independent
of depth; the oscillation period is T = 1.3 s and the descent speed is about 3.2 d per
flutter cycle or 2.5 d s−1. In the stratified environment, the speed of the disc decreases
with depth. Initially, the disc descends about 2.5 d in T ' 1.4 s, and near the bottom,
it takes T ' 1.6 s to cover the same distance. That is, the vertical speed decreases
from 1.8 d s−1 to 1.6 d s−1.

The fluid movement induced by the descending disc in the stratified environment
is visualized using a direct shadowgraph technique: a small bright light source casts
shadows on the screen as light is refracted by the perturbed fluid (see Merzkirch 1987;
Settles 2012). Figure 4 shows snapshots of the flow for Fr= 1.31. Initially, the vortex
structure is similar to that shown by Zhong et al. (2013) for planar fluttering in water,
with the wake consisting of primary vortices, secondary vortices and counter-rotating
vortex pairs. At later times, the secondary vortices disappears and the wake resembles
those of hula-hooping or spiralling descents Lee et al. (2013).

To systematically quantify the effect of stratification on the descent behaviour, we
consider the three fluid environments described in § 3 and listed in table 1: pure
water ρw, saltwater of uniform density for two density values ρ/ρw = 1.048 and
1.102 and stratified saltwater fluid at two levels of stratification Fr = 2.34 and 1.26.
In each environment, we repeatedly drop the disc ten times and reconstruct the
descent trajectories for each drop. For each reconstructed trajectory, we calculate the
following quantities: the speed of descent ż, the peak-to-peak amplitude a of each
flutter oscillation (see figure 3a) and the inclination angle θp of the disc at ‘peak’
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1 cm

0.3 s 1.0 s 1.8 s 2.8 s

FIGURE 4. Shadowgraph flow visualization at various times of a free-falling fluttering disc
in stratified fluid (Fr= 1.31; N = 1.63 rad s−1).

positions of each oscillation cycle where the disc reverses direction. We also examine
the effect of stratification on the horizontal dispersion of the disc, which we define
as the radial coordinate r away from the drop location of the disc (see figure 3a).

We normalize z by the height h, a and r by the disc diameter d, θp by π/2 and ż by
the terminal speed U. Although the descent regime is typically characterized by the
disc diameter d, because of the linear density stratified fluid, the tank height h is also
an important length scale. In particular, the value of h provides a qualitative estimate
of the density value encountered by the disc. We therefore use both d and h as typical
length scales. To avoid confusion, we clearly label the non-dimensional quantities
in the text and all figures. Figure 5(a,c,e,g) depicts the normalized values ż/U,
a/d, 2θp/π, r/d averaged over each descent trajectory, as functions of the average
density ratio ρ/ρw of the fluid. Values corresponding to each descent trajectory are
represented by a filled circle. For each fluid medium, the average (open circle) and
standard deviation (vertical bar) over all ten descent trajectories are superimposed.
Results are depicted in green for pure water, blue for homogeneous saltwater and red
for the stratified fluids. To emphasize that ż/U, a/d, 2θp/π and r/d vary with depth
−z/h, we calculate the slope with respect to depth associated with the best linear fit
for each trajectory. The slope of each trajectory, as well as the average and standard
deviation over all ten trajectories per fluid medium, are depicted in figure 5(b,d, f,h).

We make three observations based on figure 5(a–f ).

(i) Descent speed: the vertical speed of descent is slower in stratified fluids
compared with constant-density fluids. The speed ż normalized by the terminal
speed U decreases at ρ/ρw = 1.02, then increases at ρ/ρw = 1.05. This is an
artefact of the normalization with U, indicating that the descent speed for the
weaker stratification is slower than the theoretical terminal speed. The speed ż
decreases monotonically. The negative slope of ż/U indicates that in stratified
fluids, the disc slows down with increasing depth. In constant-density fluids, the
speed is nearly constant with depth, and approaches the terminal speed with
increasing fluid density (figure 5a,b).
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FIGURE 5. (Colour online) (a,c,e,g) Average descent speed ż, fluttering peak-to-peak
amplitude a, peak inclination θp and radial range r, averaged over the entire duration
of the descent motion, for various fluid densities and fluid types: pure water ρ/ρw = 1
(green), saltwater (blue) of uniform density for two density values ρ/ρw = 1.048 and
1.102 and stratified saltwater fluid (orange) at two levels of stratification Fr = 2.34 and
1.26. (b,d, f,h) The linear slope with respect to depth of each variable based on the best
linear data fit. Mean fluid density values are used for stratified fluid when computing ρ/ρw,
where ρw is the density of water. Here U is the terminal speed, accounting for buoyancy.
The 1 − σ uncertainty bars are included for each data set. Stratification induces longer
descent time, smaller fluttering amplitude, smaller peak inclination and appear to have
larger radial dispersions.
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(ii) Fluttering amplitude: in constant-density fluid, the amplitude of oscillations does
not change with depth. In stratified fluids, the fluttering amplitude decreases with
increasing depth and increasing stratification strength (figure 5c,d).

(iii) Inclination angle: the peak inclination θp of the disc decreases in stratified fluids.
The negative slope of θp indicates that in stratified fluids, the peak inclination
continues to decrease with increasing depth (figure 5e, f ).

(iv) Radial dispersion: the radial dispersion away from the drop location seems to
increase in stratified fluids. We explore this observation further in § 7.

The slowing down of the vertical motion for the stratified fluid case is consistent
with intuition. As the density increases with depth, the buoyancy-corrected weight
decreases and drag increases, thus decelerating the descending disc and increasing
the descent time. However, the decrease of both the oscillation amplitude and peak
inclination in stratified fluids, as well as the change of these quantities with depth,
are less intuitive. In § 5, we explore the physical mechanisms underlying these
observations, and in § 6, we develop a quasi-steady model that reproduces similar
results by incorporating the mechanisms proposed in § 5. To conclude this section, we
note that the radial dispersion seems to increase in stratified fluids for discs released
horizontally from rest. However, these results are not conclusive given that the sample
size is small and the variance between trials is large. We return to this issue in § 8.

5. Physical mechanisms
In this section, we discuss the physical mechanisms causing the vertical speed,

fluttering amplitude and inclination angle to decrease with depth in stratified fluids.
We focus our analysis on a subset of the experimental data reported in figure 5: ten
descents in water and ten descents in stratified fluid at Fr = 1.26. We expect the
underlying mechanisms to be applicable to all the other cases.

5.1. Apparent drag enhancement
Figure 6(a) shows the vertical position z of the centre of the disc as a function of time
for the ten descents in water and ten descents in stratified fluid at Fr= 1.26. Clearly,
the descent time is higher in the stratified case: 10 s in stratified fluid as compared
with 6.5 s in pure water. Furthermore, the slope of dz/dt is not linear in stratified fluid,
indicating a deceleration in speed as the disc descends. Blanchette & Bush (2005)
noted similar descent profiles for sediments in stratified fluids. Figure 6(b) depicts
the time-averaged descent velocity as a function of depth −z/h (not to be confused
with the average over the whole descent in figure 5a). It clearly shows the vertical
deceleration in stratified fluids. In pure water, the average velocity is almost constant,
〈ż〉/U=−0.816± 0.05 with a small negative slope (linear fit of −0.045) with respect
to depth. For Fr= 1.26, the average descent speed approaches 〈ż〉/U=−0.715± 0.03,
with a non-zero slope (linear fit of 0.175) indicating deceleration with respect to depth.

The descents in water follow side-to-side fluttering whereas in stratified fluid we
observed two types of fluttering: side-to-side fluttering and gyroscopic (hula-hoop)
fluttering. In figure 6, the hula-loop motion occurred in two of the ten stratified cases.
For these descents, the disc does not heave and its inclination is fairly constant,
producing a less-sinuous vertical profile, as seen in figure 6. The near-constant
inclination of these two trajectories is evident in figure 7(a).

The vertical descent motion in figure 6 follows closely the dynamics of a particle
falling under the influence of gravity and subject to buoyancy and drag forces:

z̈=−g+
1
m
ρ(z)Vg+

1
2m
ρ(z)|ż|2CDS. (5.1)
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FIGURE 6. (Colour online) (a) Depth as a function of time, and (b) time-averaged descent
velocity as a function of depth for descents in water (grey) and Fr= 1.26 stratified fluid
(black), where h is the height of the tank and U is the terminal speed (see table 1).
All descents in water follow side-to-side fluttering behaviour, while the descents in the
stratified fluid exhibit side-to-side and gyroscopic fluttering (the top two trajectories in (a)
and bottom two trajectories in (b)). Integrated states from (5.1) are overlaid in bold
lines. Here CD = 1.44 (blue) for the water descent with root mean square error RMSE=
0.002z/h, CD = 1.97 (red) with RMSE = 0.004z/h and CD = 0.75 z/h + 2.18 (orange)
with RMSE = 0.001z/h for the stratified fluid descents. The values for CD were found
by performing a least-squares fit on the respective experimental z data to an accuracy
of 0.001.

Here, V = Se is the volume of the disc, S=πd2/4 its area and m=ρdiscV its mass. We
solve (5.1) numerically and superimpose the solution onto figure 6 using estimated
values of the drag coefficient CD that best fitted experimental z(t) averaged over
all ten trajectories. The values for CD were estimated to the nearest 0.001. In pure
water, we obtain CD= 1.44 (solid blue lines in figure 6), with root mean square error
RMSE= 0.002z/h.

Since the descent motions in the stratified fluid exhibit both side-to-side (planar)
and gyroscopic (non-planar) fluttering, an estimate of the drag coefficient CD for each
descent type leads to CD= 1.92 for side-to-side fluttering (based on eight trajectories)
and CD = 2.32 for gyroscopic fluttering (based on two trajectories). These estimates
indicate that the drag coefficient increases in the stratified fluid in comparison with
pure water. They also seem to indicate that gyroscopic motions are characterized by
larger drag coefficient. However, a detailed comparison of the two types of fluttering,
side-to-side versus gyroscopic, would require additional data, especially in light of
the variability in the transient dynamics due to the small uncertainty in the initial
conditions. Here, we make no further distinction between the two types of fluttering
behaviours because we are mostly interested in highlighting the effect of stratification
on the descent dynamics in comparison with pure water. To this end, we group
all trajectories in the stratified fluid together. We consider two models of the drag
coefficient: a constant drag coefficient (best fit is shown in red in figure 6) and
a drag coefficient that varies linearly with depth z (best fit is shown in orange).
We found that for the constant coefficient model, CD = 1.97 matches closely the
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FIGURE 7. (Colour online) (a) Peak inclination of the disc as a function of depth −z/h.
Descents in water are in grey and descents in a stratified fluid with Fr= 1.26 are in black.
Linear fits of individual descents are computed and the average of the fit are overlaid for
water (bold blue line) and stratified fluid (bold red line). The linear slope for descents
in water is near zero while descents in stratified fluid have a negative slope. (b) Phase
plot of θ–θ̇ for descents in water (E) and stratified fluid (×). A sample descent trajectory
plotted in the θ–θ̇ plane (c) in water and (d) in the stratified fluid.

experimental data (RMSE = 0.004z/h). For the linearly varying drag coefficient,
we found CD = 0.75 z/h + 2.18 (RMSE = 0.001z/h); that is to say, the estimated
drag coefficient decreases linearly with increasing depth (−z/h). The non-constant
CD(z) is slightly better at estimating the stratified descents (RMSE= 0.001z/h versus
0.004z/h), as shown in figure 6. An advantage of the linearly varying drag coefficient
is that it allows us to use (5.1) to predict the motion beyond the experimental data,
whereas constant CD may only be valid for the available data. We emphasize that
(5.1) ignores the horizontal and orientational motion of the disc and lumps all the
dynamics into the drag coefficients. We present a more detailed model that takes into
account these effects in § 6.
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The constant drag coefficient in stratified fluid is noticeably larger than that of
water, about 40 % larger (ratio: 1.97/1.44 = 1.37). Enhanced drag was observed by
Torres et al. (2000) and Yick et al. (2009) for the vertical motion of spheres in
stratified fluid, where they found correlations between CD and the Froude number
Fr. This phenomenon was investigated further by Doostmohammadi et al. (2014).
The increase in drag coefficient in stratified fluid (or, more specifically, its linear
dependence on depth) has a major implication on the modelling and prediction of the
descent motion in stratified fluid.

5.2. Buoyancy-driven restoring torque
To examine the effect of fluid stratification on the orientation dynamics of the disc, we
plot in figure 7(a) the peak inclination angle θp as a function of depth −z/h. The peak
inclination is measured at the instants when the oscillatory motion of the disc reverses
direction. Clearly, there is a notable decrease in peak inclination in the stratified fluid.
The average peak inclination for the descents in water and stratified fluid are θp =

0.667 and 0.561 rad, respectively. A linear fit of the respective data sets leads to θp=

−0.046 z/h+ 0.65 rad for the descents in pure water and θp = 0.339 z/h+ 0.71 rad
in stratified fluid. In other words, the peak inclination remains fairly constant for the
descents in pure water and decreases with depth −z/h for the descents in stratified
fluid.

In figure 7(b), we map the descent data for all ten trials in pure water and ten
trials in stratified fluid onto the (θ , θ̇ ) phase plane. For the descents in water (E), the
motion is almost periodic and centred at (θ, θ̇)≈ (π/8, 0); this behaviour can be seen
more clearly when examining a single descent trajectory as done in figure 7(c). For
the descent in stratified fluid (×), the motion spirals inwards approaching (θ, θ̇) ≈
(π/8, 0), as seen more clearly in the single descent trajectory shown in Figure 7(d).
At (θ, θ̇) ≈ (π/8, 0), the disc descends at a fixed inclination angle following either
(i) the hula-hoop motion, where the disc’s trajectory is helical (Auguste et al. 2013),
or (ii) a steady straight-line descent at constant orientation.

Taken together, the results in figure 7 suggest the existence of a restoring torque
in stratified fluid that dampens the orientation dynamics of the disc as it descends
through the fluid. We postulate that this restoring torque is induced by the offset
in the centre of gravity and the centre of buoyancy. When the inclination angle is
non-zero, the side of the disc closer to the bottom of the tank will experience higher
buoyancy force due to the fluid’s higher density, causing a torque in the direction
which minimizes the inclination angle.

We derive an expression for the stratification-induced torque TS for a disc
undergoing planar oscillations. Let the geometric centre of the disc be at height z.
The density ρ at a radial distance ξ measured along the disc from its centre is given
by ρ = ρ(z) + (dρ/dz)ξ sin θ = ρ(z) − |γ |ξ sin θ . The offset distance ` between the
geometric centre of the disc and the centre of buoyancy in stratified fluid is given by

`=

∫
V
(ρ(z)− |γ |ξ sin θ)ξ dV

ρ(z)V
. (5.2)

Here, dV = 2πeξ dξ and V =πed2/8. Integrating over the disc’s volume V , we obtain

`=−
|γ |d2

16ρ(z)
sin(θ). (5.3)
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FIGURE 8. (Colour online) Fluttering amplitude a versus vertical location of discs
descending in (a) water and (b) stratified fluid for Fr = 1.26. Linear fits of individual
descents are computed and the average of the fit is overlaid for (a) water (bold blue line)
and (b) stratified fluid (bold red line).

The torque induced by this offset is given by TS=ρ(z)Vg` cos θ . Substituting (5.3) and
using the definition of the Brunt–Väisälä frequency N = (−γ g/ρ(z))1/2, one obtains

TS =−
J
2
ρ(z)
ρdisc

N2 sin(2θ), (5.4)

where J = ρdiscVd2/16 is the moment of inertia of the disc about its diameter. For
heavy discs with ρdisc � ρ, this torque has no effect on the rotational motion of
the disc. When the disc density is comparable with the fluid density, this torque is
proportional to N2; that is, if the stratification frequency doubles, the stratification-
induced torque increases fourfold. The effect of this torque on the full dynamics of
the disc is discussed in detail in § 6.

5.3. Effect of stratification on horizontal motion
Figure 5(c,d) shows that stratification reduces the peak-to-peak fluttering amplitude a,
with the stronger stratification leading to a twofold decrease in amplitude. In figure 8,
we compare the fluttering amplitude in pure water (figure 8a) and stratified fluid
(figure 8b) as a function of depth −z/h. In pure water, the amplitude stays nearly
constant with depth, with a linear fit of a/d =−0.002 z/h+ 1.35. In stratified fluid,
the fluttering amplitude decreases with depth at a rate a/d=−1.656 z/h+ 1.34.

We argue that the buoyancy-induced restoring torque in (5.4) is responsible for
the reduction in fluttering amplitude. As the disc starts gliding (see figure 9a), the
restoring torque causes it to pitch up, thus increasing its angle of attack. The latter
is defined as the angle between the disc and its velocity vector and is denoted by
α (figure 9b). The increase in angle of attack, in turn, increases both lift and drag.
Increased lift deflects the trajectory upwards, while increased drag slows down the
horizontal motion, causing the gliding segment to end sooner than in pure water.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

86
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

SC
 - 

N
or

ri
s 

M
ed

ic
al

 L
ib

ra
ry

, o
n 

26
 D

ec
 2

01
8 

at
 1

3:
54

:4
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.862
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


214 T. Lam, L. Vincent and E. Kanso

Gliding

Added 
buoyancy 

Lift FR

Lift FR

Drag FD

Drag FD

TS induces larger angle of attack

TS

FS

Restoring 
torque TS  

Circulation
induced torque TR  

Restoring 
torque TS  

Without fluid 
entrainment  

With fluid 
entrainment

Amplified 
restoring torque

Buoyancy  

FS

TS

Turning
TS induces smaller angle of attack

œP

œ

œ

å

å

Z

Z

z

z

0

√

√

œP

With restoring torque

No restoring torque

Plate

Plate

®(Z - ∂)

®

®ø

®(Z)

p1

p2 > p1

Lighter fluid 
entrainment

Weight mg

Weight

√
©∂

∂

d®/dz = -
©

(a)

(b)

(c)

Dissipative
torque TD  

FIGURE 9. (Colour online) (a) Schematic representation of the expected effect of the
restoring torque TS on the translational and rotational motion of a fluttering disc. During
the gliding segment, TS tends to increase the angle of attack, inducing higher lift and
drag forces FR and FD, thus shrinking and deflecting the gliding segment upwards. At
the turning point, TS moderates the peak disc inclination θp. (b,c) Free-body diagrams
of the forces and moments acting on the falling plate in the quasi-steady model in § 6.
Entrainment of lighter fluid is modelled as an area of constant density in the wake of the
disc; the added buoyancy force FS is calculated from the resulting density and pressure
jumps. The density jump also amplifies the restoring torque TS.

As the disc begins to turn past its horizontal orientation, the restoring torque now
reduces the angle of attack, which causes the disc to drift slightly further in the
turning segment for the stratified case. However, the increased drift in the turning
segment is not sufficient to compensate for the decrease in the gliding segment,
because the former is much shorter than the latter, resulting in an overall shortening
of the fluttering amplitude in stratified fluid.
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Our proposed mechanism can be used to explain the behaviour in figure 5(d), which
shows that the fluttering amplitude decreases with depth, with stronger stratification
inducing a steeper reduction. As depth increases, the density ratio between the disc
and the fluid approaches unity. Consequently, the disc’s velocity decreases, leading to
smaller hydrodynamic forces and moments, since they all depend quadratically on the
velocity. In contrast, the restoring torque in (5.4) only depends on the local density
ratio ρ(z)/ρdisc, which increases with depth. It is therefore expected that the relative
effect of the restoring torque increases significantly with depth, hence leading to a
reduction in fluttering amplitude as depth increases.

6. Quasi-steady model
Quasi-steady force models have been widely used in the context of falling discs

and plates in homogeneous fluids; see e.g. Tanabe & Kaneko (1994), Pesavento &
Wang (2004), Andersen et al. (2005a) and Hu & Wang (2014). Inspired by this body
of literature and based on our experimental observations, we formulate a new quasi-
steady model for two-dimensional descent motions in stratified fluids.

In two dimensions, we represent the disc as a thin elongated ellipse with major
axis d and minor axis e. We introduced a orthonormal frame (b1, b2, b3) centred at
the ellipse with b1 along the major axis and b2 along the minor axis.

We start from the balance of linear and angular momenta on the rigid disc, written
in the disc-fixed frame, and we account for lift, drag and buoyancy effects (see
figure 9b,c). This includes the restoring torque and the added buoyancy force due to
fluid entrainment. The equations of motion governing the motion of the disc can be
written in vector form as follows:

Ṗ= P×Ω +FD +FR +FS − (m−mb)gk,
Π̇ = P×V + TD + TR + TS.

}
(6.1)

Here, P = (mI + Madd)V and Π = (J + Jadd)Ω are the linear and angular momenta
of the disc expressed in body frame. The symbol I = diag{1, 1} denotes the identity
matrix. The mass and moment of inertia of the disc are m = πρdisced/4 and J =
πρdisced(e2

+ d2)/64, respectively. The buoyancy-corrected mass is m−mb=π(ρdisc−

ρ(z))ed/4. The added mass for an elliptical object is Madd =πρ(z) diag{d2, e2
}/4 and

the added moment of inertia is Jadd=πρ(z)(d2
− e2)2/32. The unit vector k= sin θb1+

cos θb2 points vertically up in the z-direction.
In (6.1), FD and TD denote the force and torque due to drag. Following Andersen

et al. (2005a,b), we model the drag force as a quadratic function of the angle of
attack, which we denote by α:

FD =−
1
2 eρ(z)(CD(0) cos2 α +CD(π/2) sin2 α)|V|V. (6.2)

Here, CD(0) and CD(π/2) are drag coefficients at α = 0 and α = π/2, respectively.
The dissipative torque is modelled as

TD =−
1

16µπρd4
|θ̇ |θ̇ . (6.3)

where µ is a dimensionless constant.
Flow circulation around the falling disc induces a translation force FR= ρΓ b3×V,

where Γ is the circulation around the disc and b3 is a unit vector perpendicular to
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the plane of motion. The circulation Γ depends on both the translational speed and
the angular velocity of the disc,

Γ =− 1
2 CTe|V| sin 2α +CRe2θ̇ , (6.4)

where CT is the dimensionless translational lift coefficient and CR is the dimensionless
rotational lift coefficient. We assume that the circulation-induced torque TR is zero.

Finally, FS and TS are the force and torque due to density stratification. We argued
in § 5.2 that stratification induces a buoyancy-driven restoring torque due to the offset
between the centre of mass and the centre of buoyancy, leading to TS=TSb3, where TS
is given in (5.4). Stratification also induces an additional buoyancy force FS that arises
from the fact that the disc entrains lighter fluid into regions of higher-density fluid
as it falls. This phenomenon was acknowledged by previous work on axisymmetric
objects moving through stratified fluids (see Torres et al. 2000; Yick et al. 2009;
Doostmohammadi et al. 2014) without quantifying this effect. Here, we model the
entrainment as a volume of fluid of vertical extent δ and of constant density ρ(Z− δ)
above the disc, where Z is the current position of the disc (see figure 9b). We assume
that the fluid below the disc is unperturbed, leading to a density jump at height Z.
The pressure jump at the disc is computed by integrating the density profile ρ(z) over
the area below and above the disc, resulting in p2 − p1 =−(1/2)gδ2γ (right panel of
figure 9b). The added buoyancy force due to fluid entrainment is therefore equal to,
in the plate’s rotating reference frame,

FS =−
1
2 gδ2γ d cos(θ)(sin θb1 + cos θb2). (6.5)

We solve the system of equations (6.1) numerically. In all simulations, we set
d/e = 0.0787, I = 0.0023, CT = 2.0, CR = 0.6, CD(0) = 0.15, CD(π/2) = 2.0 and
µ = 0.33. In figure 10(a), we compare the descent trajectory in pure water (grey
lines) to that in saltwater (black lines) at uniform density ρ = 1.05ρw. The two
trajectories exhibit the same peak inclination and fluttering amplitude and only differ
in the descent time. In figure 10(b), we compare the trajectories in pure water and
stratified fluid (γ = −290 kg m−4) without taking into account the buoyancy-driven
restoring torque TS and added buoyancy force FS. Again, we see little difference
between the two trajectories. This implies that changes in density in the fluid medium
alone have only a small effect on the orientation and the translational motion of the
descending disc. In figure 10(c), we take into account the buoyancy-driven restoring
torque TS due to stratification, which results in a more prominent effect on the
descent trajectory compared to pure water; namely, both the orientation angle (θ ) and
the fluttering amplitude (shown in x/d) decrease as the disc descends, in agreement
with our experimental observations. Lastly, in figure 10(d), we account for both TS
and FS and obtain similar behaviour. In sum, the numerical results based on (6.1),
when accounting for the forces and moment due to stratification, exhibit increased
descent time and reduced inclination angle and fluttering amplitude, consistent with
our experimental observations in §§ 3 and 4.

7. Radial dispersion
We have shown, using a combination of experiments and analytical modelling, that

stable vertical stratification in the fluid density affects the descent dynamics of freely
falling discs. Specifically, stratification decreases the side-to-side fluttering amplitude
and maximum disc inclination while increasing the descent time.
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FIGURE 10. (Colour online) Quasi-steady model: comparison between descent motion in
pure water (grey lines) and higher density or stratified fluid (black lines). The top row
shows the descent trajectories in the (x, z) plane, the middle row the inclination angle
θ versus time, and the bottom row the fluttering motion in the x-direction versus time.
(a) Pure water versus higher density fluid (ρ/ρw = 1.05), (b) pure water versus stratified
fluid (γ = −290 kg m−4) with TS = 0 and FS = 0, (c) pure water versus stratified fluid
with FS = 0 and (d) pure water versus stratified fluid.

We now revisit the effect of stratification on the radial dispersion away from
the disc drop location. We recall that the results presented in figure 5(g,h) indicate
that the radial dispersion r increases in stratified fluids. However, these results
are not conclusive given the small sample size (ten drops in each case) and the
large variability between drops due to amplification of the uncertainty in the initial
conditions by the fluid–structure interactions.

The problem of a disc falling in a fluid medium is deterministic in the sense
that, given a set of initial conditions, the subsequent motion of the disc follows the
classic laws of mechanics (balance of linear and angular momenta). Experimentally,
the electromagnetic clamp used to release the disc horizontally at zero velocity
introduces a small uncertainty in the initial conditions. To quantify the variations in
these initial conditions, we repeatedly dropped a heavy disc in air, as detailed in § 3.
We found the standard deviation in the landing position to be less than 0.0015 of the
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Case Fr σ1/h σ2/h rm/h rvar/h 0.9 c.d.f.

Water ∞ 0.055 0.036 0.060 0.002 r/h= 0.11
Stratified 1.26 0.097 0.078 0.084 0.011 r/h= 0.20

TABLE 2. Distribution parameters of the landing distribution for 500 free-fall fluttering
discs. σ1 and σ2 are the standard deviations along the major and minor axes from
figure 11(a,b). Here rm and rvar are the mean and variance of the radial distribution
normalize by the descent height h, and c.d.f. is the cumulative distribution function as
shown in figure 11(d).

descent height h. This implies that the initial conditions can be described by a tight
p.d.f. with small variance.

To test whether the enhanced dispersion is statistically significant, we collect the
dispersion distance from a larger data set. Following Heisinger et al. (2014), we
conduct 500 drops in pure water and 500 drops in stratified fluid at Fr= 1.26. Owing
to the small uncertainty in the drop mechanism, for the same fluid and disc parameters,
distinct drops result in distinct falling trajectories and landing positions. We recorded
the landing position of each drop and constructed the p.d.f.s of the landing sites in
the (x, y)-plane for all drops in water and in stratified fluid. The p.d.f.s are shown
in figures 11(a) and 11(b), respectively. Descent in stratified fluid is characterized
by a larger dispersion away from the drop location at (0, 0), with average standard
deviation approximately 1.92 times larger than in water. The corresponding radial
distribution is shown in figure 11(c,d). The results in water (figure 11c) are similar to
those reported in Heisinger et al. (2014), where they observed a dip near the origin
and a tight radial distribution around the origin (standard deviation σ < 10 % of the
descent height). The larger radial distribution in stratified fluid is also evident when
comparing figures 11(c,d), where the variance is 0.002h for descents in water and
0.011h for descents in stratified fluid. The cumulative distribution functions for both
pure water and stratified fluid are shown in the inset of figure 11(d). The two curves
deviate quickly after r/h > 0.05. At r/h = 0.11, 90 % of the descents in water are
accounted for. For the descents in stratified fluid, the 90 % cumulation is reached
at r/h = 0.20. A summary of the distribution parameters is listed in table 2. These
results provide evidence that density stratification enhances dispersion.

The p.d.f. at landing can be interpreted as the outcome of the dynamical evolution
of the tight p.d.f. of initial conditions under the nonlinear mechanics induced by the
fluid–structure interactions. To illustrate this point, let the phase space of the disc
be parametrized by X. Let the deterministic dynamics on the phase space be given
by Ẋ = Φ(X), where Φ = ΦW in water and Φ = ΦS in stratified fluid; ΦW and ΦS

govern both the transient and steady-state dynamics, but neither is available in closed
form owing to the complex nature of the fluid–structure interactions. Further, let
f (X(0)) denote the p.d.f. of initial conditions. The time evolution of f (X) follows the
(Fokker–Planck) continuity equation ∂f /∂t + ∇ · ( f Φ) = 0, where Φ refers to either
water or stratified fluid. Experimentally, for the same f (X(0)) (dictated by the drop
mechanism), we observed that at landing f (X) in water is less dispersed than f (X)
in stratified fluid. We associate this enhanced dispersion in the stratified fluid to the
amplification of initial conditions by the deterministic ‘flow’ Φ on the phase space.
Therefore, we conjecture that stratification enhances dispersion due to the inherent
differences between ΦS(X) and ΦW(X), independent of the form of f (X(0)).
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FIGURE 11. Landing distribution in the (x, y) plane for 500 consecutive drops in water in
(a) and (c) and in stratified fluid in (b) and (d). Cumulative distribution functions (c.d.f.s)
are shown in the inset of (d). Discs are initially released from (x, y)= (0, 0). The stratified
fluid has Fr= 1.26.

This interpretation is consistent with Heisinger et al. (2014). Heisinger and
co-authors computed, for similar initial conditions, the landing p.d.f. associated with
four descent regimes in pure water and showed that enhanced dispersion is usually
associated with the chaotic regime (figure 2). In the chaotic regime, the fluid acts as
a ‘randomization device’ that dissociates successive drops of the disc, resulting in a
broadband distribution of landing sites away from the drop location and almost equal
probability of landing on either side of the disc (head or tail). Stratification appears to
achieve similar enhancement of radial dispersion but in the fluttering regime, where
the disc never flips during its descent. In fact, stratification enhances dispersion while
simultaneously reducing the fluttering amplitudes and inclination angles, making the
descent trajectories closer to steady descents. These characteristics could be beneficial
to many engineering and biological applications as discussed in § 8.

The exact mechanisms underlying the enhanced dispersion in the stratified fluid
remain unclear. The results in §§ 5 and 6, that stratification decreases the side-to-side
fluttering amplitude and maximum disc inclination while increasing the descent time,
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seem to suggest the opposite. However, the data set in figure 11 of the distribution
of the radial position at landing clearly indicates enhanced dispersion in the stratified
environment. Taken together, these results suggest that the quasi-permanent fluttering
regime may not be responsible for the enhanced dispersion, and points to other
mechanisms at play. Mostly, it seems that the transient behaviour and its role in
amplifying the initial conditions plays an important role in the enhancement of
radial dispersion, thus raising the question whether such enhancement is independent
of initial conditions. The fact that the descents in the stratified fluid exhibit both
side-to-side and gyroscopic fluttering while those in pure water flutter strictly
side-to-side could be another reason for the enhanced dispersion. To probe the
generality of the enhanced dispersion due to stratification, future experiments will be
designed to explore non-horizontal initial conditions and different descent behaviours
(fluttering, chaotic, tumbling) as well as to disentangle the effect of the transient
regime on the overall dispersion.

Irrespective of the mechanism, enhanced dispersion in the stratified environment
means that the disc drifts horizontally as it descends. Horizontal drifts were also
observed by Hurlen (2006) for freely falling elliptical cylinders, both numerically
and experimentally, with more subdued drifts in the latter. Biró et al. (2007) later
noted similar drifts in the case of oscillating and levitating spheres in stratified
fluid, and proposed that strong drifts are a result of a feedback of the nonlinear
vortices and lee waves. In weakly stratified turbulent fluid, van Aartrijk, Clercx &
Winters (2008) and van Aartrijk & Clercx (2010) observed enhanced horizontal
dispersions for particles. Here, we postulate that the origin of such drift is due
fundamentally to unsteady effects beyond what is accounted for in the quasi-steady
model in § 6. The quasi-steady model, while it captures the increase in descent
time and decrease in fluttering amplitude and peak inclinations of the disc, does not
exhibit enhanced dispersion, even when the disc is initially given a small horizontal
velocity (results not shown). The absence of radial drift in the quasi-steady model
is not surprising. The model does not account for (1) unsteady force corrections,
(2) effects due to the interaction of the disc and its vortices (see Andersen et al.
2005a,b) or (3) three-dimensional effects. The first effect includes lift generation
during acceleration from rest (Pullin & Wang 2004; Wang, Birch & Dickinson 2004)
and unsteady forces due to vortex shedding (Andersen et al. 2005a; Lee et al. 2013;
Zhong et al. 2013). Future extension of this work will focus on visualizing and
quantifying the flow around the falling disc to study the unsteady vortex formation
and entrainment in stratified environments and their effects on the drift dynamics.

8. Conclusions
We have experimentally investigated the motion of rigid discs falling freely in

a vertically stratified fluid of saltwater solution. Starting from discs fluttering in
water, we systematically varied the fluid environment to examine the effect of
changes in the fluid density on the fluttering behaviour. We considered three fluid
environments: pure water, constant-density saltwater (larger than that of pure water)
and stratified saltwater (density varying linearly from pure water to saltwater). We
found that for a disc released from rest and at a horizontal orientation (up to a small
uncertainty), density stratification significantly decreases the vertical descent speed,
fluttering amplitude and maximum inclination angle of the disc, while simultaneously
increasing its radial dispersion.

We chose the parameters carefully, as detailed in table 1, so that in all three
environments the disc flutters as it descends. We considered stratified environments
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with relatively strong stratification, Fr= 1.26 and 2.34. These stratification levels are
comparable with the stratification in the ocean upper layer, within 100 km from the
sea surface; see NODC (Levitus) World Ocean Atlas 1994.

Our results, that stratification enhances dispersion while simultaneously reducing
the fluttering amplitudes and inclination angles, could be relevant to many engineering
and biological applications. For example, it could be beneficial for the unpowered
deployment of sensors in ocean monitoring applications where the orientation of the
sensory platform matters (see Pounds et al. 2016), or for systems where tumbling is
not ideal, for example, with larval dispersal (see Pineda, Hare & Sponaugle 2007; Gee,
Western & Swearer 2016). In fact, a rigorous framework for relating the parameters
of the descending object and fluid medium to the probability of landing sites is
relevant to a wide range of engineering applications. Examples include unpowered
robotics and optimizing the placement of photonic solar cells on microrobots where
landing distribution is to be maximized (see Valdes et al. 2012), or enhancing our
understanding of accidental drops of objects such as pipes during offshore operations
(see Majed & Cooper 2013; Yasseri 2014; Awotahegn, Oosterkamp & Nystrøm 2016).
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